Spaces:
Sleeping
Sleeping
File size: 15,887 Bytes
d35ea9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import click
import re
import json
import tempfile
import torch
import dnnlib
from training import training_loop
from metrics import metric_main
from torch_utils import training_stats
from torch_utils import custom_ops
#----------------------------------------------------------------------------
def subprocess_fn(rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
if c.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus)
else:
init_method = f'file://{init_file}'
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus)
# Init torch_utils.
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(rank=rank, **c)
#----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
os.makedirs(c.run_dir)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
if c.num_gpus == 1:
subprocess_fn(rank=0, c=c, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus)
#----------------------------------------------------------------------------
def init_dataset_kwargs(data):
try:
dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data, use_labels=True, max_size=None, xflip=False)
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels.
dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
except IOError as err:
raise click.ClickException(f'--data: {err}')
#----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
#----------------------------------------------------------------------------
@click.command()
# Required.
@click.option('--outdir', help='Where to save the results', metavar='DIR', required=True)
@click.option('--data', help='Training data', metavar='[ZIP|DIR]', type=str, required=True)
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--preset', help='Preset configs', metavar='STR', type=str, required=True)
# Optional features.
@click.option('--cond', help='Train conditional model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--mirror', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--aug', help='Enable Augmentation', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--resume', help='Resume from given network pickle', metavar='[PATH|URL]', type=str)
# Misc hyperparameters.
@click.option('--g-batch-gpu', help='Limit batch size per GPU for G', metavar='INT', type=click.IntRange(min=1))
@click.option('--d-batch-gpu', help='Limit batch size per GPU for D', metavar='INT', type=click.IntRange(min=1))
# Misc settings.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full', show_default=True)
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=10000000, show_default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=4, show_default=True)
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=3, show_default=True)
@click.option('-n','--dry-run', help='Print training options and exit', is_flag=True)
def main(**kwargs):
# Initialize config.
opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
c.G_kwargs = dnnlib.EasyDict(class_name='training.networks.Generator')
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks.Discriminator')
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0], eps=1e-8)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0], eps=1e-8)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.R3GANLoss')
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2)
# Training set.
c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data)
if opts.cond and not c.training_set_kwargs.use_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
c.training_set_kwargs.use_labels = opts.cond
c.training_set_kwargs.xflip = opts.mirror
# Hyperparameters & settings.
c.num_gpus = opts.gpus
c.batch_size = opts.batch
c.g_batch_gpu = opts.g_batch_gpu or opts.batch // opts.gpus
c.d_batch_gpu = opts.d_batch_gpu or opts.batch // opts.gpus
if opts.preset == 'CIFAR10':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32]]
FP16Stages = [-1, -2, -3]
NoiseDimension = 64
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 5000 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.55, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 0.05, 'final_value': 0.005, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'FFHQ-64':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024, 512]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 16]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
ema_nimg = 500 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.3, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 2, 'final_value': 0.2, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'FFHQ-256':
WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024, 512, 256, 128]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 16, 8, 4]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
ema_nimg = 500 * 1000
decay_nimg = 2e7
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.3, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 150, 'final_value': 15, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'ImageNet-32':
WidthPerStage = [6 * x // 4 for x in [1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32]]
FP16Stages = [-1, -2, -3]
NoiseDimension = 64
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 50000 * 1000
decay_nimg = 2e8
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.5, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 0.5, 'final_value': 0.05, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
if opts.preset == 'ImageNet-64':
WidthPerStage = [6 * x // 4 for x in [1024, 1024, 1024, 1024, 1024]]
BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1]]
CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 32]]
FP16Stages = [-1, -2, -3, -4]
NoiseDimension = 64
c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension
c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0]
ema_nimg = 50000 * 1000
decay_nimg = 2e8
c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg }
c.aug_scheduler = { 'base_value': 0, 'final_value': 0.4, 'total_nimg': decay_nimg }
c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg }
c.gamma_scheduler = { 'base_value': 1, 'final_value': 0.1, 'total_nimg': decay_nimg }
c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg }
c.G_kwargs.NoiseDimension = NoiseDimension
c.G_kwargs.WidthPerStage = WidthPerStage
c.G_kwargs.CardinalityPerStage = CardinalityPerStage
c.G_kwargs.BlocksPerStage = BlocksPerStage
c.G_kwargs.ExpansionFactor = 2
c.G_kwargs.FP16Stages = FP16Stages
c.D_kwargs.WidthPerStage = [*reversed(WidthPerStage)]
c.D_kwargs.CardinalityPerStage = [*reversed(CardinalityPerStage)]
c.D_kwargs.BlocksPerStage = [*reversed(BlocksPerStage)]
c.D_kwargs.ExpansionFactor = 2
c.D_kwargs.FP16Stages = [x + len(FP16Stages) for x in FP16Stages]
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.data_loader_kwargs.num_workers = opts.workers
# Sanity checks.
if c.batch_size % c.num_gpus != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (c.num_gpus * c.g_batch_gpu) != 0 or c.batch_size % (c.num_gpus * c.d_batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
raise click.ClickException('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
# Augmentation.
if opts.aug:
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=0.5, contrast=0.5, lumaflip=0.5, hue=0.5, saturation=0.5, cutout=1)
# Resume.
if opts.resume is not None:
c.resume_pkl = opts.resume
# Performance-related toggles.
if opts.nobench:
c.cudnn_benchmark = False
# Description string.
desc = f'{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------
|