Spaces:
Sleeping
Sleeping
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Custom replacement for `torch.nn.functional.grid_sample` that | |
supports arbitrarily high order gradients between the input and output. | |
Only works on 2D images and assumes | |
`mode='bilinear'`, `padding_mode='zeros'`, `align_corners=False`.""" | |
import torch | |
from pkg_resources import parse_version | |
# pylint: disable=redefined-builtin | |
# pylint: disable=arguments-differ | |
# pylint: disable=protected-access | |
#---------------------------------------------------------------------------- | |
enabled = False # Enable the custom op by setting this to true. | |
_use_pytorch_1_11_api = parse_version(torch.__version__) >= parse_version('1.11.0a') # Allow prerelease builds of 1.11 | |
#---------------------------------------------------------------------------- | |
def grid_sample(input, grid): | |
if _should_use_custom_op(): | |
return _GridSample2dForward.apply(input, grid) | |
return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=False) | |
#---------------------------------------------------------------------------- | |
def _should_use_custom_op(): | |
return enabled | |
#---------------------------------------------------------------------------- | |
class _GridSample2dForward(torch.autograd.Function): | |
def forward(ctx, input, grid): | |
assert input.ndim == 4 | |
assert grid.ndim == 4 | |
output = torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=False) | |
ctx.save_for_backward(input, grid) | |
return output | |
def backward(ctx, grad_output): | |
input, grid = ctx.saved_tensors | |
grad_input, grad_grid = _GridSample2dBackward.apply(grad_output, input, grid) | |
return grad_input, grad_grid | |
#---------------------------------------------------------------------------- | |
class _GridSample2dBackward(torch.autograd.Function): | |
def forward(ctx, grad_output, input, grid): | |
op, _ = torch._C._jit_get_operation('aten::grid_sampler_2d_backward') | |
if _use_pytorch_1_11_api: | |
output_mask = (ctx.needs_input_grad[1], ctx.needs_input_grad[2]) | |
grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False, output_mask) | |
else: | |
grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False) | |
ctx.save_for_backward(grid) | |
return grad_input, grad_grid | |
def backward(ctx, grad2_grad_input, grad2_grad_grid): | |
_ = grad2_grad_grid # unused | |
grid, = ctx.saved_tensors | |
grad2_grad_output = None | |
grad2_input = None | |
grad2_grid = None | |
if ctx.needs_input_grad[0]: | |
grad2_grad_output = _GridSample2dForward.apply(grad2_grad_input, grid) | |
assert not ctx.needs_input_grad[2] | |
return grad2_grad_output, grad2_input, grad2_grid | |
#---------------------------------------------------------------------------- | |