multimodalart's picture
Squashing commit
4450790 verified
from io import BytesIO
import cv2
import numpy as np
import torch
from PIL import Image
from ..log import log
from ..utils import EASINGS, apply_easing, pil2tensor
from .transform import MTB_TransformImage
def hex_to_rgb(hex_color: str, bgr: bool = False):
hex_color = hex_color.lstrip("#")
if bgr:
return tuple(int(hex_color[i : i + 2], 16) for i in (4, 2, 0))
return tuple(int(hex_color[i : i + 2], 16) for i in (0, 2, 4))
class MTB_BatchFloatMath:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"reverse": ("BOOLEAN", {"default": False}),
"operation": (
["add", "sub", "mul", "div", "pow", "abs"],
{"default": "add"},
),
}
}
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/utils"
FUNCTION = "execute"
def execute(self, reverse: bool, operation: str, **kwargs: list[float]):
res: list[float] = []
vals = list(kwargs.values())
if reverse:
vals = vals[::-1]
ref_count = len(vals[0])
for v in vals:
if len(v) != ref_count:
raise ValueError(
f"All values must have the same length (current: {len(v)}, ref: {ref_count}"
)
match operation:
case "add":
for i in range(ref_count):
result = sum(v[i] for v in vals)
res.append(result)
case "sub":
for i in range(ref_count):
result = vals[0][i] - sum(v[i] for v in vals[1:])
res.append(result)
case "mul":
for i in range(ref_count):
result = vals[0][i] * vals[1][i]
res.append(result)
case "div":
for i in range(ref_count):
result = vals[0][i] / vals[1][i]
res.append(result)
case "pow":
for i in range(ref_count):
result: float = vals[0][i] ** vals[1][i]
res.append(result)
case "abs":
for i in range(ref_count):
result = abs(vals[0][i])
res.append(result)
case _:
log.info(f"For now this mode ({operation}) is not implemented")
return (res,)
class MTB_BatchFloatNormalize:
"""Normalize the values in the list of floats"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {"floats": ("FLOATS",)},
}
RETURN_TYPES = ("FLOATS",)
RETURN_NAMES = ("normalized_floats",)
CATEGORY = "mtb/batch"
FUNCTION = "execute"
def execute(
self,
floats: list[float],
):
min_value = min(floats)
max_value = max(floats)
normalized_floats = [
(x - min_value) / (max_value - min_value) for x in floats
]
log.debug(f"Floats: {floats}")
log.debug(f"Normalized Floats: {normalized_floats}")
return (normalized_floats,)
class MTB_BatchTimeWrap:
"""Remap a batch using a time curve (FLOATS)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"target_count": ("INT", {"default": 25, "min": 2}),
"frames": ("IMAGE",),
"curve": ("FLOATS",),
},
}
RETURN_TYPES = ("IMAGE", "FLOATS")
RETURN_NAMES = ("image", "interpolated_floats")
CATEGORY = "mtb/batch"
FUNCTION = "execute"
def execute(
self, target_count: int, frames: torch.Tensor, curve: list[float]
):
"""Apply time warping to a list of video frames based on a curve."""
log.debug(f"Input frames shape: {frames.shape}")
log.debug(f"Curve: {curve}")
total_duration = sum(curve)
log.debug(f"Total duration: {total_duration}")
B, H, W, C = frames.shape
log.debug(f"Batch Size: {B}")
normalized_times = np.linspace(0, 1, target_count)
interpolated_curve = np.interp(
normalized_times, np.linspace(0, 1, len(curve)), curve
).tolist()
log.debug(f"Interpolated curve: {interpolated_curve}")
interpolated_frame_indices = [
(B - 1) * value for value in interpolated_curve
]
log.debug(f"Interpolated frame indices: {interpolated_frame_indices}")
rounded_indices = [
int(round(idx)) for idx in interpolated_frame_indices
]
rounded_indices = np.clip(rounded_indices, 0, B - 1)
# Gather frames based on interpolated indices
warped_frames = []
for index in rounded_indices:
warped_frames.append(frames[index].unsqueeze(0))
warped_tensor = torch.cat(warped_frames, dim=0)
log.debug(f"Warped frames shape: {warped_tensor.shape}")
return (warped_tensor, interpolated_curve)
class MTB_BatchMake:
"""Simply duplicates the input frame as a batch"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"count": ("INT", {"default": 1}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate_batch"
CATEGORY = "mtb/batch"
def generate_batch(self, image: torch.Tensor, count):
if len(image.shape) == 3:
image = image.unsqueeze(0)
return (image.repeat(count, 1, 1, 1),)
class MTB_BatchShape:
"""Generates a batch of 2D shapes with optional shading (experimental)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"count": ("INT", {"default": 1}),
"shape": (
["Box", "Circle", "Diamond", "Tube"],
{"default": "Circle"},
),
"image_width": ("INT", {"default": 512}),
"image_height": ("INT", {"default": 512}),
"shape_size": ("INT", {"default": 100}),
"color": ("COLOR", {"default": "#ffffff"}),
"bg_color": ("COLOR", {"default": "#000000"}),
"shade_color": ("COLOR", {"default": "#000000"}),
"thickness": ("INT", {"default": 5}),
"shadex": ("FLOAT", {"default": 0.0}),
"shadey": ("FLOAT", {"default": 0.0}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate_shapes"
CATEGORY = "mtb/batch"
def generate_shapes(
self,
count,
shape,
image_width,
image_height,
shape_size,
color,
bg_color,
shade_color,
thickness,
shadex,
shadey,
):
log.debug(f"COLOR: {color}")
log.debug(f"BG_COLOR: {bg_color}")
log.debug(f"SHADE_COLOR: {shade_color}")
# Parse color input to BGR tuple for OpenCV
color = hex_to_rgb(color)
bg_color = hex_to_rgb(bg_color)
shade_color = hex_to_rgb(shade_color)
res = []
for x in range(count):
# Initialize an image canvas
canvas = np.full(
(image_height, image_width, 3), bg_color, dtype=np.uint8
)
mask = np.zeros((image_height, image_width), dtype=np.uint8)
# Compute the center point of the shape
center = (image_width // 2, image_height // 2)
if shape == "Box":
half_size = shape_size // 2
top_left = (center[0] - half_size, center[1] - half_size)
bottom_right = (center[0] + half_size, center[1] + half_size)
cv2.rectangle(mask, top_left, bottom_right, 255, -1)
elif shape == "Circle":
cv2.circle(mask, center, shape_size // 2, 255, -1)
elif shape == "Diamond":
pts = np.array(
[
[center[0], center[1] - shape_size // 2],
[center[0] + shape_size // 2, center[1]],
[center[0], center[1] + shape_size // 2],
[center[0] - shape_size // 2, center[1]],
]
)
cv2.fillPoly(mask, [pts], 255)
elif shape == "Tube":
cv2.ellipse(
mask,
center,
(shape_size // 2, shape_size // 2),
0,
0,
360,
255,
thickness,
)
# Color the shape
canvas[mask == 255] = color
# Apply shading effects to a separate shading canvas
shading = np.zeros_like(canvas, dtype=np.float32)
shading[:, :, 0] = shadex * np.linspace(0, 1, image_width)
shading[:, :, 1] = shadey * np.linspace(
0, 1, image_height
).reshape(-1, 1)
shading_canvas = cv2.addWeighted(
canvas.astype(np.float32), 1, shading, 1, 0
).astype(np.uint8)
# Apply shading only to the shape area using the mask
canvas[mask == 255] = shading_canvas[mask == 255]
res.append(canvas)
return (pil2tensor(res),)
class MTB_BatchFloatFill:
"""Fills a batch float with a single value until it reaches the target length"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"floats": ("FLOATS",),
"direction": (["head", "tail"], {"default": "tail"}),
"value": ("FLOAT", {"default": 0.0}),
"count": ("INT", {"default": 1}),
}
}
FUNCTION = "fill_floats"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
def fill_floats(self, floats, direction, value, count):
size = len(floats)
if size > count:
raise ValueError(
f"Size ({size}) is less then target count ({count})"
)
rem = count - size
if direction == "tail":
floats = floats + [value] * rem
else:
floats = [value] * rem + floats
return (floats,)
class MTB_BatchFloatAssemble:
"""Assembles mutiple batches of floats into a single stream (batch)"""
@classmethod
def INPUT_TYPES(cls):
return {"required": {"reverse": ("BOOLEAN", {"default": False})}}
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
FUNCTION = "assemble_floats"
def assemble_floats(self, reverse: bool, **kwargs: list[float]):
res: list[float] = []
if reverse:
for x in reversed(kwargs.values()):
if x:
res += x
else:
for x in kwargs.values():
if x:
res += x
return (res,)
class MTB_BatchFloat:
"""Generates a batch of float values with interpolation"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mode": (
["Single", "Steps"],
{"default": "Steps"},
),
"count": ("INT", {"default": 2}),
"min": ("FLOAT", {"default": 0.0, "step": 0.001}),
"max": ("FLOAT", {"default": 1.0, "step": 0.001}),
"easing": (
[
"Linear",
"Sine In",
"Sine Out",
"Sine In/Out",
"Quart In",
"Quart Out",
"Quart In/Out",
"Cubic In",
"Cubic Out",
"Cubic In/Out",
"Circ In",
"Circ Out",
"Circ In/Out",
"Back In",
"Back Out",
"Back In/Out",
"Elastic In",
"Elastic Out",
"Elastic In/Out",
"Bounce In",
"Bounce Out",
"Bounce In/Out",
],
{"default": "Linear"},
),
}
}
FUNCTION = "set_floats"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
def set_floats(self, mode, count, min, max, easing):
if mode == "Steps" and count == 1:
raise ValueError(
"Steps mode requires at least a count of 2 values"
)
keyframes = []
if mode == "Single":
keyframes = [min] * count
return (keyframes,)
for i in range(count):
normalized_step = i / (count - 1)
eased_step = apply_easing(normalized_step, easing)
eased_value = min + (max - min) * eased_step
keyframes.append(eased_value)
return (keyframes,)
class MTB_BatchMerge:
"""Merges multiple image batches with different frame counts"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"fusion_mode": (
["add", "multiply", "average"],
{"default": "average"},
),
"fill": (["head", "tail"], {"default": "tail"}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "merge_batches"
CATEGORY = "mtb/batch"
def merge_batches(self, fusion_mode: str, fill: str, **kwargs):
images = kwargs.values()
max_frames = max(img.shape[0] for img in images)
adjusted_images = []
for img in images:
frame_count = img.shape[0]
if frame_count < max_frames:
fill_frame = img[0] if fill == "head" else img[-1]
fill_frames = fill_frame.repeat(
max_frames - frame_count, 1, 1, 1
)
adjusted_batch = (
torch.cat((fill_frames, img), dim=0)
if fill == "head"
else torch.cat((img, fill_frames), dim=0)
)
else:
adjusted_batch = img
adjusted_images.append(adjusted_batch)
# Merge the adjusted batches
merged_image = None
for img in adjusted_images:
if merged_image is None:
merged_image = img
else:
if fusion_mode == "add":
merged_image += img
elif fusion_mode == "multiply":
merged_image *= img
elif fusion_mode == "average":
merged_image = (merged_image + img) / 2
return (merged_image,)
class MTB_Batch2dTransform:
"""Transform a batch of images using a batch of keyframes"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"border_handling": (
["edge", "constant", "reflect", "symmetric"],
{"default": "edge"},
),
"constant_color": ("COLOR", {"default": "#000000"}),
},
"optional": {
"x": ("FLOATS",),
"y": ("FLOATS",),
"zoom": ("FLOATS",),
"angle": ("FLOATS",),
"shear": ("FLOATS",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transform_batch"
CATEGORY = "mtb/batch"
def get_num_elements(
self, param: None | torch.Tensor | list[torch.Tensor] | list[float]
) -> int:
if isinstance(param, torch.Tensor):
return torch.numel(param)
elif isinstance(param, list):
return len(param)
return 0
def transform_batch(
self,
image: torch.Tensor,
border_handling: str,
constant_color: str,
x: list[float] | None = None,
y: list[float] | None = None,
zoom: list[float] | None = None,
angle: list[float] | None = None,
shear: list[float] | None = None,
):
if all(
self.get_num_elements(param) <= 0
for param in [x, y, zoom, angle, shear]
):
raise ValueError(
"At least one transform parameter must be provided"
)
keyframes: dict[str, list[float]] = {
"x": [],
"y": [],
"zoom": [],
"angle": [],
"shear": [],
}
default_vals = {"x": 0, "y": 0, "zoom": 1.0, "angle": 0, "shear": 0}
if x and self.get_num_elements(x) > 0:
keyframes["x"] = x
if y and self.get_num_elements(y) > 0:
keyframes["y"] = y
if zoom and self.get_num_elements(zoom) > 0:
# some easing types like elastic can pull back... maybe it should abs the value?
keyframes["zoom"] = [max(x, 0.00001) for x in zoom]
if angle and self.get_num_elements(angle) > 0:
keyframes["angle"] = angle
if shear and self.get_num_elements(shear) > 0:
keyframes["shear"] = shear
for name, values in keyframes.items():
count = len(values)
if count > 0 and count != image.shape[0]:
raise ValueError(
f"Length of {name} values ({count}) must match number of images ({image.shape[0]})"
)
if count == 0:
keyframes[name] = [default_vals[name]] * image.shape[0]
transformer = MTB_TransformImage()
res = [
transformer.transform(
image[i].unsqueeze(0),
keyframes["x"][i],
keyframes["y"][i],
keyframes["zoom"][i],
keyframes["angle"][i],
keyframes["shear"][i],
border_handling,
constant_color,
)[0]
for i in range(image.shape[0])
]
return (torch.cat(res, dim=0),)
class MTB_BatchFloatFit:
"""Fit a list of floats using a source and target range"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"values": ("FLOATS", {"forceInput": True}),
"clamp": ("BOOLEAN", {"default": False}),
"auto_compute_source": ("BOOLEAN", {"default": False}),
"source_min": ("FLOAT", {"default": 0.0, "step": 0.01}),
"source_max": ("FLOAT", {"default": 1.0, "step": 0.01}),
"target_min": ("FLOAT", {"default": 0.0, "step": 0.01}),
"target_max": ("FLOAT", {"default": 1.0, "step": 0.01}),
"easing": (
EASINGS,
{"default": "Linear"},
),
}
}
FUNCTION = "fit_range"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
DESCRIPTION = "Fit a list of floats using a source and target range"
def fit_range(
self,
values: list[float],
clamp: bool,
auto_compute_source: bool,
source_min: float,
source_max: float,
target_min: float,
target_max: float,
easing: str,
):
if auto_compute_source:
source_min = min(values)
source_max = max(values)
from .graph_utils import MTB_FitNumber
res = []
fit_number = MTB_FitNumber()
for value in values:
(transformed_value,) = fit_number.set_range(
value,
clamp,
source_min,
source_max,
target_min,
target_max,
easing,
)
res.append(transformed_value)
return (res,)
class MTB_PlotBatchFloat:
"""Plot floats"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"width": ("INT", {"default": 768}),
"height": ("INT", {"default": 768}),
"point_size": ("INT", {"default": 4}),
"seed": ("INT", {"default": 1}),
"start_at_zero": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("plot",)
FUNCTION = "plot"
CATEGORY = "mtb/batch"
def plot(
self,
width: int,
height: int,
point_size: int,
seed: int,
start_at_zero: bool,
interactive_backend: bool = False,
**kwargs,
):
import matplotlib
# NOTE: This is for notebook usage or tests, i.e not exposed to comfy that should always use Agg
if not interactive_backend:
matplotlib.use("Agg")
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(width / 100, height / 100), dpi=100)
fig.set_edgecolor("black")
fig.patch.set_facecolor("#2e2e2e")
# Setting background color and grid
ax.set_facecolor("#2e2e2e") # Dark gray background
ax.grid(color="gray", linestyle="-", linewidth=0.5, alpha=0.5)
# Finding global min and max across all lists for scaling the plot
all_values = [value for values in kwargs.values() for value in values]
global_min = min(all_values)
global_max = max(all_values)
y_padding = 0.05 * (global_max - global_min)
ax.set_ylim(global_min - y_padding, global_max + y_padding)
max_length = max(len(values) for values in kwargs.values())
if start_at_zero:
x_values = np.linspace(0, max_length - 1, max_length)
else:
x_values = np.linspace(1, max_length, max_length)
ax.set_xlim(1, max_length) # Set X-axis limits
np.random.seed(seed)
colors = np.random.rand(len(kwargs), 3) # Generate random RGB values
for color, (label, values) in zip(colors, kwargs.items()):
ax.plot(x_values[: len(values)], values, label=label, color=color)
ax.legend(
title="Legend",
title_fontsize="large",
fontsize="medium",
edgecolor="black",
loc="best",
)
# Setting labels and title
ax.set_xlabel("Time", fontsize="large", color="white")
ax.set_ylabel("Value", fontsize="large", color="white")
ax.set_title(
"Plot of Values over Time", fontsize="x-large", color="white"
)
# Adjusting tick colors to be visible on dark background
ax.tick_params(colors="white")
# Changing color of the axes border
for _, spine in ax.spines.items():
spine.set_edgecolor("white")
# Rendering the plot into a NumPy array
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
buf.seek(0)
image = Image.open(buf)
plt.close(fig) # Closing the figure to free up memory
return (pil2tensor(image),)
def draw_point(self, image, point, color, point_size):
x, y = point
y = image.shape[0] - 1 - y # Invert Y-coordinate
half_size = point_size // 2
x_start, x_end = (
max(0, x - half_size),
min(image.shape[1], x + half_size + 1),
)
y_start, y_end = (
max(0, y - half_size),
min(image.shape[0], y + half_size + 1),
)
image[y_start:y_end, x_start:x_end] = color
def draw_line(self, image, start, end, color):
x1, y1 = start
x2, y2 = end
# Invert Y-coordinate
y1 = image.shape[0] - 1 - y1
y2 = image.shape[0] - 1 - y2
dx = x2 - x1
dy = y2 - y1
is_steep = abs(dy) > abs(dx)
if is_steep:
x1, y1 = y1, x1
x2, y2 = y2, x2
swapped = False
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
swapped = True
dx = x2 - x1
dy = y2 - y1
error = int(dx / 2.0)
y = y1
ystep = None
if y1 < y2:
ystep = 1
else:
ystep = -1
for x in range(x1, x2 + 1):
coord = (y, x) if is_steep else (x, y)
image[coord] = color
error -= abs(dy)
if error < 0:
y += ystep
error += dx
if swapped:
image[(x1, y1)] = color
image[(x2, y2)] = color
DEFAULT_INTERPOLANT = lambda t: t * t * t * (t * (t * 6 - 15) + 10)
class MTB_BatchShake:
"""Applies a shaking effect to batches of images."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"position_amount_x": ("FLOAT", {"default": 1.0}),
"position_amount_y": ("FLOAT", {"default": 1.0}),
"rotation_amount": ("FLOAT", {"default": 10.0}),
"frequency": ("FLOAT", {"default": 1.0, "min": 0.005}),
"frequency_divider": ("FLOAT", {"default": 1.0, "min": 0.005}),
"octaves": ("INT", {"default": 1, "min": 1}),
"seed": ("INT", {"default": 0}),
},
}
RETURN_TYPES = ("IMAGE", "FLOATS", "FLOATS", "FLOATS")
RETURN_NAMES = ("image", "pos_x", "pos_y", "rot")
FUNCTION = "apply_shake"
CATEGORY = "mtb/batch"
# def interpolant(self, t):
# return t * t * t * (t * (t * 6 - 15) + 10)
def generate_perlin_noise_2d(
self, shape, res, tileable=(False, False), interpolant=None
):
"""Generate a 2D numpy array of perlin noise.
Args:
shape: The shape of the generated array (tuple of two ints).
This must be a multple of res.
res: The number of periods of noise to generate along each
axis (tuple of two ints). Note shape must be a multiple of
res.
tileable: If the noise should be tileable along each axis
(tuple of two bools). Defaults to (False, False).
interpolant: The interpolation function, defaults to
t*t*t*(t*(t*6 - 15) + 10).
Returns
-------
A numpy array of shape shape with the generated noise.
Raises
------
ValueError: If shape is not a multiple of res.
"""
interpolant = interpolant or DEFAULT_INTERPOLANT
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = (
np.mgrid[0 : res[0] : delta[0], 0 : res[1] : delta[1]].transpose(
1, 2, 0
)
% 1
)
# Gradients
angles = 2 * np.pi * np.random.rand(res[0] + 1, res[1] + 1)
gradients = np.dstack((np.cos(angles), np.sin(angles)))
if tileable[0]:
gradients[-1, :] = gradients[0, :]
if tileable[1]:
gradients[:, -1] = gradients[:, 0]
gradients = gradients.repeat(d[0], 0).repeat(d[1], 1)
g00 = gradients[: -d[0], : -d[1]]
g10 = gradients[d[0] :, : -d[1]]
g01 = gradients[: -d[0], d[1] :]
g11 = gradients[d[0] :, d[1] :]
# Ramps
n00 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1])) * g00, 2)
n10 = np.sum(np.dstack((grid[:, :, 0] - 1, grid[:, :, 1])) * g10, 2)
n01 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1] - 1)) * g01, 2)
n11 = np.sum(
np.dstack((grid[:, :, 0] - 1, grid[:, :, 1] - 1)) * g11, 2
)
# Interpolation
t = interpolant(grid)
n0 = n00 * (1 - t[:, :, 0]) + t[:, :, 0] * n10
n1 = n01 * (1 - t[:, :, 0]) + t[:, :, 0] * n11
return np.sqrt(2) * ((1 - t[:, :, 1]) * n0 + t[:, :, 1] * n1)
def generate_fractal_noise_2d(
self,
shape,
res,
octaves=1,
persistence=0.5,
lacunarity=2,
tileable=(True, True),
interpolant=None,
):
"""Generate a 2D numpy array of fractal noise.
Args:
shape: The shape of the generated array (tuple of two ints).
This must be a multiple of lacunarity**(octaves-1)*res.
res: The number of periods of noise to generate along each
axis (tuple of two ints). Note shape must be a multiple of
(lacunarity**(octaves-1)*res).
octaves: The number of octaves in the noise. Defaults to 1.
persistence: The scaling factor between two octaves.
lacunarity: The frequency factor between two octaves.
tileable: If the noise should be tileable along each axis
(tuple of two bools). Defaults to (True,True).
interpolant: The, interpolation function, defaults to
t*t*t*(t*(t*6 - 15) + 10).
Returns
-------
A numpy array of fractal noise and of shape shape generated by
combining several octaves of perlin noise.
Raises
------
ValueError: If shape is not a multiple of
(lacunarity**(octaves-1)*res).
"""
interpolant = interpolant or DEFAULT_INTERPOLANT
noise = np.zeros(shape)
frequency = 1
amplitude = 1
for _ in range(octaves):
noise += amplitude * self.generate_perlin_noise_2d(
shape,
(frequency * res[0], frequency * res[1]),
tileable,
interpolant,
)
frequency *= lacunarity
amplitude *= persistence
return noise
def fbm(self, x, y, octaves):
# noise_2d = self.generate_fractal_noise_2d((256, 256), (8, 8), octaves)
# Now, extract a single noise value based on x and y, wrapping indices if necessary
x_idx = int(x) % 256
y_idx = int(y) % 256
return self.noise_pattern[x_idx, y_idx]
def apply_shake(
self,
images,
position_amount_x,
position_amount_y,
rotation_amount,
frequency,
frequency_divider,
octaves,
seed,
):
# Rehash
np.random.seed(seed)
self.position_offset = np.random.uniform(-1e3, 1e3, 3)
self.rotation_offset = np.random.uniform(-1e3, 1e3, 3)
self.noise_pattern = self.generate_perlin_noise_2d(
(512, 512), (32, 32), (True, True)
)
# Assuming frame count is derived from the first dimension of images tensor
frame_count = images.shape[0]
frequency = frequency / frequency_divider
# Generate shaking parameters for each frame
x_translations = []
y_translations = []
rotations = []
for frame_num in range(frame_count):
time = frame_num * frequency
x_idx = (self.position_offset[0] + frame_num) % 256
y_idx = (self.position_offset[1] + frame_num) % 256
np_position = np.array(
[
self.fbm(x_idx, time, octaves),
self.fbm(y_idx, time, octaves),
]
)
# np_position = np.array(
# [
# self.fbm(self.position_offset[0] + frame_num, time, octaves),
# self.fbm(self.position_offset[1] + frame_num, time, octaves),
# ]
# )
# np_rotation = self.fbm(self.rotation_offset[2] + frame_num, time, octaves)
rot_idx = (self.rotation_offset[2] + frame_num) % 256
np_rotation = self.fbm(rot_idx, time, octaves)
x_translations.append(np_position[0] * position_amount_x)
y_translations.append(np_position[1] * position_amount_y)
rotations.append(np_rotation * rotation_amount)
# Convert lists to tensors
# x_translations = torch.tensor(x_translations, dtype=torch.float32)
# y_translations = torch.tensor(y_translations, dtype=torch.float32)
# rotations = torch.tensor(rotations, dtype=torch.float32)
# Create an instance of Batch2dTransform
transform = MTB_Batch2dTransform()
log.debug(
f"Applying shaking with parameters: \nposition {position_amount_x}, {position_amount_y}\nrotation {rotation_amount}\nfrequency {frequency}\noctaves {octaves}"
)
# Apply shaking transformations to images
shaken_images = transform.transform_batch(
images,
border_handling="edge", # Assuming edge handling as default
constant_color="#000000", # Assuming black as default constant color
x=x_translations,
y=y_translations,
angle=rotations,
)[0]
return (shaken_images, x_translations, y_translations, rotations)
__nodes__ = [
MTB_BatchFloat,
MTB_Batch2dTransform,
MTB_BatchShape,
MTB_BatchMake,
MTB_BatchFloatAssemble,
MTB_BatchFloatFill,
MTB_BatchFloatNormalize,
MTB_BatchMerge,
MTB_BatchShake,
MTB_PlotBatchFloat,
MTB_BatchTimeWrap,
MTB_BatchFloatFit,
MTB_BatchFloatMath,
]