Spaces:
Runtime error
Runtime error
Anonymous
commited on
Commit
·
d27fe32
1
Parent(s):
afed1a5
format and clean code
Browse files- app.py +233 -80
- generate_prompt.py +33 -538
- tasks/ner.py +16 -27
- tasks/nli.py +19 -18
- tasks/qa.py +38 -83
- tasks/summarization.py +45 -23
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
|
|
|
|
3 |
from openai import OpenAI
|
4 |
-
from generate_prompt import construct_generic_prompt, recommend_config
|
5 |
|
6 |
-
|
7 |
|
8 |
QA = "QA"
|
9 |
SUMMARIZATION = "Summarization"
|
@@ -14,21 +14,59 @@ tasks_datasets = {
|
|
14 |
QA: ["XQuad", "Indicqa"],
|
15 |
SUMMARIZATION: ["XLSum", "HeSum"],
|
16 |
NLI: ["XNLI"],
|
17 |
-
NER: ["MasakaNER", "WikiANN"]
|
18 |
}
|
19 |
|
20 |
# List of all languages
|
21 |
languages = [
|
22 |
-
"English",
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
|
30 |
|
31 |
-
|
32 |
def get_datasets(task):
|
33 |
return tasks_datasets.get(task, [])
|
34 |
|
@@ -39,16 +77,25 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
39 |
|
40 |
with gr.Accordion(label="Task Details", open=True):
|
41 |
with gr.Row():
|
42 |
-
task = gr.Dropdown(
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
config_recommendation = gr.Button("Recommend Configuration")
|
46 |
with gr.Row():
|
47 |
-
config_prompt = gr.Textbox(
|
48 |
-
|
|
|
|
|
|
|
49 |
with gr.Row():
|
50 |
-
# examples_selection = gr.Dropdown(["English", "Source"], label="examples", value='English')
|
51 |
-
# output_selection = gr.Dropdown(["English", "Source"], label="output", value='English')
|
52 |
with gr.Accordion(label="Prompt Template", open=True):
|
53 |
with gr.Column(scale=2):
|
54 |
# Set the same background style across all components
|
@@ -56,16 +103,41 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
56 |
instruction = gr.Textbox(label="Instruction")
|
57 |
with gr.Row(variant="panel"):
|
58 |
zero_shot = gr.Checkbox(label="Zero Shot Setting", value=False)
|
59 |
-
with gr.Accordion(
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
with gr.Row(equal_height=True, variant="panel"):
|
64 |
-
with gr.Accordion(
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# Accordion for Few Shot example selection
|
70 |
with gr.Accordion(label="Prompt Input Data", open=False):
|
71 |
question = gr.Textbox(label="Question", visible=True)
|
@@ -78,87 +150,145 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
78 |
generate_button = gr.Button("Generate Prompt")
|
79 |
|
80 |
with gr.Row():
|
81 |
-
prompt = gr.Textbox(
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
def update_datasets(selected_task):
|
85 |
return gr.Dropdown(choices=get_datasets(selected_task))
|
86 |
|
87 |
-
|
88 |
def toggle_task_inputs(selected_task):
|
89 |
if selected_task == QA:
|
90 |
return (
|
91 |
-
gr.update(visible=True),
|
92 |
-
gr.update(visible=
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
elif selected_task == SUMMARIZATION:
|
95 |
return (
|
96 |
-
gr.update(visible=False),
|
97 |
-
gr.update(visible=False),
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
elif selected_task == NER:
|
100 |
return (
|
101 |
-
gr.update(visible=False),
|
102 |
-
gr.update(visible=
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
else:
|
105 |
return (
|
106 |
-
gr.update(visible=False),
|
107 |
-
gr.update(visible=False),
|
|
|
|
|
|
|
|
|
108 |
)
|
109 |
|
110 |
-
|
111 |
def toggle_num_examples(zero_shot_value):
|
112 |
# If zero_shot is True, hide the num_examples slider
|
113 |
return gr.update(visible=not zero_shot_value)
|
114 |
|
115 |
def update_language_selection(language):
|
116 |
-
return
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
def generatePrompt(
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
config = {
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
if task == QA:
|
125 |
text_example = {
|
126 |
-
|
127 |
-
|
128 |
}
|
129 |
elif task == SUMMARIZATION:
|
130 |
text_example = {
|
131 |
-
|
132 |
}
|
133 |
elif task == NER:
|
134 |
-
text_example = {
|
135 |
-
'tokens': sentence,
|
136 |
-
'ner_tags': ''
|
137 |
-
}
|
138 |
else:
|
139 |
-
text_example = {
|
140 |
-
'hypothesis': hypothesis,
|
141 |
-
'premise': premise
|
142 |
-
}
|
143 |
|
144 |
-
prompt = construct_generic_prompt(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
return prompt
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
os.environ["OPENAI_API_KEY"] = openai_key
|
152 |
client = OpenAI()
|
153 |
|
154 |
config = {
|
155 |
"input": config_input,
|
156 |
"prefix": config_prefix,
|
157 |
-
"context": config_context.split(
|
158 |
"output": config_output,
|
159 |
"language": language,
|
160 |
"num_examples": num_examples,
|
161 |
-
"zero_shot": zero_shot
|
162 |
}
|
163 |
|
164 |
response = client.chat.completions.create(
|
@@ -171,7 +301,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
171 |
{"type": "image_url", "image_url": url},
|
172 |
{"type": "config", "config": config},
|
173 |
{"type": "task", "text": task},
|
174 |
-
{"type": "dataset", "text": dataset}
|
175 |
],
|
176 |
},
|
177 |
],
|
@@ -183,37 +313,60 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
183 |
chat_history.append((message, out))
|
184 |
return "", chat_history
|
185 |
|
186 |
-
|
187 |
# Bind functions to dropdown changes and button click
|
188 |
# task.change(fn=update_datasets, outputs=dataset)
|
189 |
-
language.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=few_shot)
|
192 |
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=num_examples)
|
193 |
task.change(fn=update_datasets, inputs=task, outputs=dataset)
|
194 |
-
task.change(
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
generate_button.click(
|
198 |
generatePrompt,
|
199 |
inputs=[
|
200 |
-
instruction,
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
],
|
205 |
-
outputs=[prompt]
|
206 |
)
|
207 |
|
208 |
config_recommendation.click(
|
209 |
-
recommend_config,
|
210 |
-
inputs=[
|
211 |
-
task,
|
212 |
-
language,
|
213 |
-
model_type
|
214 |
-
],
|
215 |
-
outputs=[config_prompt]
|
216 |
)
|
217 |
|
218 |
-
if __name__ ==
|
219 |
demo.launch(share=True)
|
|
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
from openai import OpenAI
|
|
|
5 |
|
6 |
+
from generate_prompt import construct_generic_prompt, recommend_config
|
7 |
|
8 |
QA = "QA"
|
9 |
SUMMARIZATION = "Summarization"
|
|
|
14 |
QA: ["XQuad", "Indicqa"],
|
15 |
SUMMARIZATION: ["XLSum", "HeSum"],
|
16 |
NLI: ["XNLI"],
|
17 |
+
NER: ["MasakaNER", "WikiANN"],
|
18 |
}
|
19 |
|
20 |
# List of all languages
|
21 |
languages = [
|
22 |
+
"English",
|
23 |
+
"Spanish",
|
24 |
+
"French",
|
25 |
+
"German",
|
26 |
+
"Chinese",
|
27 |
+
"Japanese",
|
28 |
+
"Korean",
|
29 |
+
"Italian",
|
30 |
+
"Portuguese",
|
31 |
+
"Russian",
|
32 |
+
"Arabic",
|
33 |
+
"Hindi",
|
34 |
+
"Bengali",
|
35 |
+
"Turkish",
|
36 |
+
"Vietnamese",
|
37 |
+
"Polish",
|
38 |
+
"Dutch",
|
39 |
+
"Indonesian",
|
40 |
+
"Malay",
|
41 |
+
"Thai",
|
42 |
+
"Greek",
|
43 |
+
"Swedish",
|
44 |
+
"Hungarian",
|
45 |
+
"Finnish",
|
46 |
+
"Danish",
|
47 |
+
"Norwegian",
|
48 |
+
"Hebrew",
|
49 |
+
"Czech",
|
50 |
+
"Slovak",
|
51 |
+
"Bulgarian",
|
52 |
+
"Romanian",
|
53 |
+
"Serbian",
|
54 |
+
"Croatian",
|
55 |
+
"Ukrainian",
|
56 |
+
"Lithuanian",
|
57 |
+
"Latvian",
|
58 |
+
"Estonian",
|
59 |
+
"Filipino",
|
60 |
+
"Icelandic",
|
61 |
+
"Irish",
|
62 |
+
"Welsh",
|
63 |
+
"Maltese",
|
64 |
+
"Swahili",
|
65 |
+
"Zulu",
|
66 |
+
"Afrikaans",
|
67 |
]
|
68 |
|
69 |
|
|
|
70 |
def get_datasets(task):
|
71 |
return tasks_datasets.get(task, [])
|
72 |
|
|
|
77 |
|
78 |
with gr.Accordion(label="Task Details", open=True):
|
79 |
with gr.Row():
|
80 |
+
task = gr.Dropdown(
|
81 |
+
label="Task", choices=list(tasks_datasets.keys()), value=QA
|
82 |
+
)
|
83 |
+
language = gr.Dropdown(
|
84 |
+
label="Source Language", choices=languages, value="English"
|
85 |
+
)
|
86 |
+
model_type = gr.Dropdown(
|
87 |
+
label="Model Type",
|
88 |
+
choices=["Multilingual", "Standard"],
|
89 |
+
value="Multilingual",
|
90 |
+
)
|
91 |
config_recommendation = gr.Button("Recommend Configuration")
|
92 |
with gr.Row():
|
93 |
+
config_prompt = gr.Textbox(
|
94 |
+
label="Recommended Configuration",
|
95 |
+
interactive=False,
|
96 |
+
placeholder="Recommended Configuration for this scenerio",
|
97 |
+
)
|
98 |
with gr.Row():
|
|
|
|
|
99 |
with gr.Accordion(label="Prompt Template", open=True):
|
100 |
with gr.Column(scale=2):
|
101 |
# Set the same background style across all components
|
|
|
103 |
instruction = gr.Textbox(label="Instruction")
|
104 |
with gr.Row(variant="panel"):
|
105 |
zero_shot = gr.Checkbox(label="Zero Shot Setting", value=False)
|
106 |
+
with gr.Accordion(
|
107 |
+
"Few Shot - Select Type of Examples ",
|
108 |
+
open=False,
|
109 |
+
visible=True,
|
110 |
+
) as few_shot:
|
111 |
+
dataset = gr.Dropdown(
|
112 |
+
label="Dataset",
|
113 |
+
choices=tasks_datasets[QA],
|
114 |
+
value="XlSum",
|
115 |
+
)
|
116 |
+
num_examples = gr.Slider(
|
117 |
+
label="Number of examples in context",
|
118 |
+
minimum=1,
|
119 |
+
maximum=10,
|
120 |
+
step=1,
|
121 |
+
value=3,
|
122 |
+
)
|
123 |
with gr.Row(equal_height=True, variant="panel"):
|
124 |
+
with gr.Accordion(
|
125 |
+
label="Language Component Selection", open=False
|
126 |
+
):
|
127 |
+
prefix_selection = gr.Dropdown(
|
128 |
+
["English", "Source"],
|
129 |
+
label="instruction",
|
130 |
+
value="English",
|
131 |
+
)
|
132 |
+
context_selection = gr.Dropdown(
|
133 |
+
["English", "Source"], label="context", value="English"
|
134 |
+
)
|
135 |
+
examples_selection = gr.Dropdown(
|
136 |
+
["English", "Source"], label="examples", value="English"
|
137 |
+
)
|
138 |
+
output_selection = gr.Dropdown(
|
139 |
+
["English", "Source"], label="output", value="English"
|
140 |
+
)
|
141 |
# Accordion for Few Shot example selection
|
142 |
with gr.Accordion(label="Prompt Input Data", open=False):
|
143 |
question = gr.Textbox(label="Question", visible=True)
|
|
|
150 |
generate_button = gr.Button("Generate Prompt")
|
151 |
|
152 |
with gr.Row():
|
153 |
+
prompt = gr.Textbox(
|
154 |
+
label="Generated Prompt",
|
155 |
+
interactive=False,
|
156 |
+
placeholder="Generated prompt will appear here.",
|
157 |
+
)
|
158 |
|
159 |
def update_datasets(selected_task):
|
160 |
return gr.Dropdown(choices=get_datasets(selected_task))
|
161 |
|
|
|
162 |
def toggle_task_inputs(selected_task):
|
163 |
if selected_task == QA:
|
164 |
return (
|
165 |
+
gr.update(visible=True),
|
166 |
+
gr.update(visible=True),
|
167 |
+
gr.update(visible=False),
|
168 |
+
gr.update(visible=False),
|
169 |
+
gr.update(visible=False),
|
170 |
+
gr.update(visible=False),
|
171 |
)
|
172 |
elif selected_task == SUMMARIZATION:
|
173 |
return (
|
174 |
+
gr.update(visible=False),
|
175 |
+
gr.update(visible=False),
|
176 |
+
gr.update(visible=True),
|
177 |
+
gr.update(visible=False),
|
178 |
+
gr.update(visible=False),
|
179 |
+
gr.update(visible=False),
|
180 |
)
|
181 |
elif selected_task == NER:
|
182 |
return (
|
183 |
+
gr.update(visible=False),
|
184 |
+
gr.update(visible=False),
|
185 |
+
gr.update(visible=False),
|
186 |
+
gr.update(visible=True),
|
187 |
+
gr.update(visible=False),
|
188 |
+
gr.update(visible=False),
|
189 |
)
|
190 |
else:
|
191 |
return (
|
192 |
+
gr.update(visible=False),
|
193 |
+
gr.update(visible=False),
|
194 |
+
gr.update(visible=False),
|
195 |
+
gr.update(visible=False),
|
196 |
+
gr.update(visible=True),
|
197 |
+
gr.update(visible=True),
|
198 |
)
|
199 |
|
|
|
200 |
def toggle_num_examples(zero_shot_value):
|
201 |
# If zero_shot is True, hide the num_examples slider
|
202 |
return gr.update(visible=not zero_shot_value)
|
203 |
|
204 |
def update_language_selection(language):
|
205 |
+
return (
|
206 |
+
gr.update(choices=list({"English", language})),
|
207 |
+
gr.update(choices=list({"English", language})),
|
208 |
+
gr.update(choices=list({"English", language})),
|
209 |
+
gr.update(choices=list({"English", language})),
|
210 |
+
)
|
211 |
|
212 |
+
def generatePrompt(
|
213 |
+
instruction,
|
214 |
+
num_examples,
|
215 |
+
zero_shot,
|
216 |
+
task,
|
217 |
+
selected_language,
|
218 |
+
dataset,
|
219 |
+
prefix_selection,
|
220 |
+
context_selection,
|
221 |
+
examples_selection,
|
222 |
+
output_selection,
|
223 |
+
text,
|
224 |
+
question,
|
225 |
+
context,
|
226 |
+
sentence,
|
227 |
+
hypothesis,
|
228 |
+
premise,
|
229 |
+
):
|
230 |
|
231 |
+
config = {
|
232 |
+
"prefix": str.lower(prefix_selection),
|
233 |
+
"input": str.lower(context_selection),
|
234 |
+
"context": str.lower(examples_selection),
|
235 |
+
"output": str.lower(output_selection),
|
236 |
+
}
|
237 |
|
238 |
if task == QA:
|
239 |
text_example = {
|
240 |
+
"context": context,
|
241 |
+
"question": question,
|
242 |
}
|
243 |
elif task == SUMMARIZATION:
|
244 |
text_example = {
|
245 |
+
"text": text,
|
246 |
}
|
247 |
elif task == NER:
|
248 |
+
text_example = {"tokens": sentence, "ner_tags": ""}
|
|
|
|
|
|
|
249 |
else:
|
250 |
+
text_example = {"hypothesis": hypothesis, "premise": premise}
|
|
|
|
|
|
|
251 |
|
252 |
+
prompt = construct_generic_prompt(
|
253 |
+
task,
|
254 |
+
instruction,
|
255 |
+
text_example,
|
256 |
+
zero_shot,
|
257 |
+
num_examples,
|
258 |
+
selected_language,
|
259 |
+
dataset,
|
260 |
+
config,
|
261 |
+
)
|
262 |
|
263 |
return prompt
|
264 |
|
265 |
+
def respond(
|
266 |
+
message,
|
267 |
+
openai_key,
|
268 |
+
url,
|
269 |
+
chat_history,
|
270 |
+
model,
|
271 |
+
config_input,
|
272 |
+
config_prefix,
|
273 |
+
config_context,
|
274 |
+
config_output,
|
275 |
+
task,
|
276 |
+
dataset,
|
277 |
+
language,
|
278 |
+
num_examples,
|
279 |
+
zero_shot,
|
280 |
+
):
|
281 |
os.environ["OPENAI_API_KEY"] = openai_key
|
282 |
client = OpenAI()
|
283 |
|
284 |
config = {
|
285 |
"input": config_input,
|
286 |
"prefix": config_prefix,
|
287 |
+
"context": config_context.split(", "),
|
288 |
"output": config_output,
|
289 |
"language": language,
|
290 |
"num_examples": num_examples,
|
291 |
+
"zero_shot": zero_shot,
|
292 |
}
|
293 |
|
294 |
response = client.chat.completions.create(
|
|
|
301 |
{"type": "image_url", "image_url": url},
|
302 |
{"type": "config", "config": config},
|
303 |
{"type": "task", "text": task},
|
304 |
+
{"type": "dataset", "text": dataset},
|
305 |
],
|
306 |
},
|
307 |
],
|
|
|
313 |
chat_history.append((message, out))
|
314 |
return "", chat_history
|
315 |
|
|
|
316 |
# Bind functions to dropdown changes and button click
|
317 |
# task.change(fn=update_datasets, outputs=dataset)
|
318 |
+
language.change(
|
319 |
+
fn=update_language_selection,
|
320 |
+
inputs=language,
|
321 |
+
outputs=[
|
322 |
+
prefix_selection,
|
323 |
+
context_selection,
|
324 |
+
examples_selection,
|
325 |
+
output_selection,
|
326 |
+
],
|
327 |
+
)
|
328 |
|
329 |
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=few_shot)
|
330 |
zero_shot.change(fn=toggle_num_examples, inputs=zero_shot, outputs=num_examples)
|
331 |
task.change(fn=update_datasets, inputs=task, outputs=dataset)
|
332 |
+
task.change(
|
333 |
+
fn=toggle_task_inputs,
|
334 |
+
inputs=task,
|
335 |
+
outputs=[
|
336 |
+
question,
|
337 |
+
context,
|
338 |
+
text,
|
339 |
+
sentence,
|
340 |
+
hypothesis,
|
341 |
+
premise,
|
342 |
+
],
|
343 |
+
)
|
344 |
generate_button.click(
|
345 |
generatePrompt,
|
346 |
inputs=[
|
347 |
+
instruction,
|
348 |
+
num_examples,
|
349 |
+
zero_shot,
|
350 |
+
task,
|
351 |
+
language,
|
352 |
+
dataset,
|
353 |
+
prefix_selection,
|
354 |
+
context_selection,
|
355 |
+
examples_selection,
|
356 |
+
output_selection,
|
357 |
+
text,
|
358 |
+
question,
|
359 |
+
context,
|
360 |
+
sentence,
|
361 |
+
hypothesis,
|
362 |
+
premise,
|
363 |
],
|
364 |
+
outputs=[prompt],
|
365 |
)
|
366 |
|
367 |
config_recommendation.click(
|
368 |
+
recommend_config, inputs=[task, language, model_type], outputs=[config_prompt]
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
)
|
370 |
|
371 |
+
if __name__ == "__main__":
|
372 |
demo.launch(share=True)
|
generate_prompt.py
CHANGED
@@ -1,31 +1,10 @@
|
|
1 |
-
import collections
|
2 |
-
import csv
|
3 |
import enum
|
4 |
-
import json
|
5 |
-
import logging
|
6 |
-
import os
|
7 |
-
import re
|
8 |
-
import string
|
9 |
-
import sys
|
10 |
-
import unicodedata
|
11 |
-
from typing import Any, Dict, List, NewType, Union
|
12 |
|
13 |
-
import numpy as np
|
14 |
-
import openai
|
15 |
import pandas as pd
|
16 |
-
import requests
|
17 |
-
import yaml
|
18 |
-
from datasets import Dataset, load_dataset
|
19 |
-
from easygoogletranslate import EasyGoogleTranslate
|
20 |
-
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
21 |
-
from tqdm import tqdm
|
22 |
-
from yaml.loader import SafeLoader
|
23 |
|
24 |
-
from tasks import ner,
|
25 |
|
26 |
|
27 |
-
# from models.model_completion import gpt3x_completion, gemini_completion
|
28 |
-
|
29 |
class LanguageType(enum.Enum):
|
30 |
Low = "Low"
|
31 |
High = "High"
|
@@ -36,504 +15,6 @@ class ModelType(enum.Enum):
|
|
36 |
Multilingual = "Multilingual"
|
37 |
|
38 |
|
39 |
-
def get_entities_gpt3_long(prompt):
|
40 |
-
response = openai.ChatCompletion.create(
|
41 |
-
engine="chatgpt", temperature=0, messages=[{"role": "user", "content": prompt}]
|
42 |
-
)
|
43 |
-
return response["choices"][0]["message"]["content"]
|
44 |
-
|
45 |
-
|
46 |
-
def gpt3x_completion(
|
47 |
-
prompt: Union[str, List[Dict[str, str]]],
|
48 |
-
) -> str:
|
49 |
-
import os
|
50 |
-
import openai
|
51 |
-
os.environ["OPENAI_API_KEY"] = '07d805ec4fbd484ebc923a3a41e1773d'
|
52 |
-
OPENAI_API_KEY = '07d805ec4fbd484ebc923a3a41e1773d'
|
53 |
-
openai.api_type = "azure"
|
54 |
-
openai.api_base = 'https://hebsum-itaim-uks.openai.azure.com/'
|
55 |
-
openai.api_version = "2023-03-15-preview"
|
56 |
-
openai.api_key = '07d805ec4fbd484ebc923a3a41e1773d'
|
57 |
-
|
58 |
-
def get_entities_chatGPT(final_prompt):
|
59 |
-
response = openai.ChatCompletion.create(
|
60 |
-
engine="gpt35-16k",
|
61 |
-
temperature=0,
|
62 |
-
messages=[
|
63 |
-
{"role": "user", "content": final_prompt}
|
64 |
-
]
|
65 |
-
)
|
66 |
-
return response['choices'][0]['message']['content']
|
67 |
-
|
68 |
-
return get_entities_chatGPT(final_prompt=prompt)
|
69 |
-
|
70 |
-
|
71 |
-
def mixtral_completion(prompt):
|
72 |
-
url = "https://api.together.xyz/v1/chat/completions"
|
73 |
-
|
74 |
-
# Define your Together API key
|
75 |
-
together_api_key = "851cfc39f3d7a246a2342259f5f6fbba4721c6002123365fba2254c9c9c424ad" # Replace with your actual API key
|
76 |
-
|
77 |
-
# Define the request payload
|
78 |
-
payload = {
|
79 |
-
"temperature": 0,
|
80 |
-
"max_tokens": 30,
|
81 |
-
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
82 |
-
"messages": [{"role": "user", "content": f"{prompt}"}],
|
83 |
-
}
|
84 |
-
|
85 |
-
# Define request headers
|
86 |
-
headers = {
|
87 |
-
"Authorization": f"Bearer {together_api_key}",
|
88 |
-
"Content-Type": "application/json",
|
89 |
-
}
|
90 |
-
|
91 |
-
# Send POST request
|
92 |
-
response = requests.post(url, json=payload, headers=headers)
|
93 |
-
|
94 |
-
# Check response status
|
95 |
-
if response.status_code == 200:
|
96 |
-
# Print the response content (API output)
|
97 |
-
return response.json()["choices"][0]["message"]["content"]
|
98 |
-
else:
|
99 |
-
# Print error message if request fails
|
100 |
-
print(f"Error: {response.status_code} - {response.text}")
|
101 |
-
|
102 |
-
|
103 |
-
XQUAD_LANG2CODES = {
|
104 |
-
"bengali": "bn",
|
105 |
-
"korean": "ko",
|
106 |
-
"swahili": "sw",
|
107 |
-
"english": "en",
|
108 |
-
"indonesian": "id",
|
109 |
-
"arabic": "ar",
|
110 |
-
"finnish": "fi",
|
111 |
-
"telugu": "te",
|
112 |
-
"russian": "ru",
|
113 |
-
"german": "de",
|
114 |
-
"greek": "el",
|
115 |
-
"hindi": "hi",
|
116 |
-
"vietnamese": "vi",
|
117 |
-
"romanian": "ro",
|
118 |
-
}
|
119 |
-
|
120 |
-
INDICQA_LANG2CODES = {
|
121 |
-
"indicqa": "as",
|
122 |
-
"bengali": "bn",
|
123 |
-
"gujarati": "gu",
|
124 |
-
"hindi": "hi",
|
125 |
-
"kannada": "kn",
|
126 |
-
"malayalam": "ml",
|
127 |
-
"marathi": "mr",
|
128 |
-
"odia": "or",
|
129 |
-
"punjabi": "pa",
|
130 |
-
"tamil": "ta",
|
131 |
-
"telugu": "te",
|
132 |
-
"assamese": "as",
|
133 |
-
}
|
134 |
-
|
135 |
-
PUNCT = {
|
136 |
-
chr(i)
|
137 |
-
for i in range(sys.maxunicode)
|
138 |
-
if unicodedata.category(chr(i)).startswith("P")
|
139 |
-
}.union(string.punctuation)
|
140 |
-
WHITESPACE_LANGS = ["en", "es", "hi", "vi", "de", "ar"]
|
141 |
-
MIXED_SEGMENTATION_LANGS = ["zh"]
|
142 |
-
|
143 |
-
TYDIQA_LANG2CODES = {
|
144 |
-
"bengali": "bn",
|
145 |
-
"korean": "ko",
|
146 |
-
"swahili": "sw",
|
147 |
-
"english": "en",
|
148 |
-
"indonesian": "id",
|
149 |
-
"arabic": "ar",
|
150 |
-
"finnish": "fi",
|
151 |
-
"telugu": "te",
|
152 |
-
"russian": "ru",
|
153 |
-
"assamese": "as",
|
154 |
-
"persian": "fa",
|
155 |
-
}
|
156 |
-
|
157 |
-
logger = logging.Logger("Xlsum_task")
|
158 |
-
LANGUAGE_TO_SUFFIX = {
|
159 |
-
"chinese_simplified": "zh-CN",
|
160 |
-
"french": "fr",
|
161 |
-
"portuguese": "pt",
|
162 |
-
"english": "en",
|
163 |
-
"arabic": "ar",
|
164 |
-
"hindi": "hi",
|
165 |
-
"indonesian": "id",
|
166 |
-
"amharic": "am",
|
167 |
-
"bengali": "bn",
|
168 |
-
"telugu": "te",
|
169 |
-
"burmese": "my",
|
170 |
-
"german": "de",
|
171 |
-
"greek": "el",
|
172 |
-
"tamil": "ta",
|
173 |
-
"assamese": "as",
|
174 |
-
"hindi": "hi",
|
175 |
-
"vietnamese": "vi",
|
176 |
-
"russian": "ru",
|
177 |
-
"telugu": "te",
|
178 |
-
"romanian": "ro",
|
179 |
-
"malayalam": "ml",
|
180 |
-
"persian": "fa",
|
181 |
-
}
|
182 |
-
|
183 |
-
PARAMS = NewType("PARAMS", Dict[str, Any])
|
184 |
-
|
185 |
-
|
186 |
-
def read_parameters(args_path) -> PARAMS:
|
187 |
-
with open(args_path) as f:
|
188 |
-
args = yaml.load(f, Loader=SafeLoader)
|
189 |
-
return args
|
190 |
-
|
191 |
-
|
192 |
-
def load_qa_dataset(dataset_name, lang, split, translate_test=False, limit=5):
|
193 |
-
if dataset_name == "indicqa":
|
194 |
-
if split != "train":
|
195 |
-
dataset = load_dataset(
|
196 |
-
"ai4bharat/IndicQA", f"indicqa.{INDICQA_LANG2CODES[lang]}"
|
197 |
-
)[split]
|
198 |
-
else:
|
199 |
-
dataset = load_dataset("squad_v2")[split]
|
200 |
-
elif dataset_name == "xquad":
|
201 |
-
if split != "train":
|
202 |
-
dataset = load_dataset("xquad", f"xquad.{XQUAD_LANG2CODES[lang]}")[
|
203 |
-
"validation"
|
204 |
-
]
|
205 |
-
else:
|
206 |
-
dataset = load_dataset("squad")[split]
|
207 |
-
elif dataset_name == "tydiqa":
|
208 |
-
dataset = load_dataset("tydiqa", "secondary_task")[split]
|
209 |
-
dataset = dataset.map(
|
210 |
-
lambda example: {"lang": TYDIQA_LANG2CODES[example["id"].split("-")[0]]}
|
211 |
-
)
|
212 |
-
dataset = dataset.filter(lambda example: example["lang"] == lang)
|
213 |
-
elif dataset_name == "mlqa":
|
214 |
-
if split == "train":
|
215 |
-
print("No Training Data for MLQA, switching to validation!")
|
216 |
-
split = "validation"
|
217 |
-
if translate_test:
|
218 |
-
dataset_name = f"mlqa-translate-test.{lang}"
|
219 |
-
else:
|
220 |
-
dataset_name = f"mlqa.{lang}.{lang}"
|
221 |
-
|
222 |
-
dataset = load_dataset("mlqa", dataset_name)[split]
|
223 |
-
|
224 |
-
else:
|
225 |
-
raise NotImplementedError()
|
226 |
-
return dataset.select(np.arange(limit))
|
227 |
-
|
228 |
-
|
229 |
-
def construct_prompt(
|
230 |
-
instruction: str,
|
231 |
-
test_example: dict,
|
232 |
-
ic_examples: List[dict],
|
233 |
-
zero_shot: bool,
|
234 |
-
lang: str,
|
235 |
-
config: Dict[Any, Any],
|
236 |
-
):
|
237 |
-
example_prompt = PromptTemplate(
|
238 |
-
input_variables=["context", "question", "answers"],
|
239 |
-
template="Context: {context}\nQuestion: {question}\n" "Answers: {answers}",
|
240 |
-
)
|
241 |
-
|
242 |
-
zero_shot_template = (
|
243 |
-
f"""{instruction}""" + "\n<Context>: {context} \n<Question>: {question} " ""
|
244 |
-
)
|
245 |
-
|
246 |
-
prompt = (
|
247 |
-
FewShotPromptTemplate(
|
248 |
-
examples=ic_examples,
|
249 |
-
prefix=instruction,
|
250 |
-
example_prompt=example_prompt,
|
251 |
-
suffix="<Context>: {context} \n<Question>: {question} \nAnswers: ?",
|
252 |
-
input_variables=["question", "context"],
|
253 |
-
)
|
254 |
-
if not zero_shot
|
255 |
-
else PromptTemplate(
|
256 |
-
input_variables=["question", "context"], template=zero_shot_template
|
257 |
-
)
|
258 |
-
)
|
259 |
-
|
260 |
-
label = test_example["answers"]
|
261 |
-
if config["input"] != lang:
|
262 |
-
test_example = _translate_example(
|
263 |
-
example=test_example, src_language=lang, target_language=config["input"]
|
264 |
-
)
|
265 |
-
|
266 |
-
return (
|
267 |
-
prompt.format(
|
268 |
-
question=test_example["question"], context=test_example["context"]
|
269 |
-
),
|
270 |
-
label,
|
271 |
-
)
|
272 |
-
|
273 |
-
|
274 |
-
def dump_metrics(
|
275 |
-
lang: str, config: Dict[str, str], f1: float, em: float, metric_logger_path: str
|
276 |
-
):
|
277 |
-
# Check if the metric logger file exists
|
278 |
-
file_exists = os.path.exists(metric_logger_path)
|
279 |
-
|
280 |
-
# Open the CSV file in append mode
|
281 |
-
with open(metric_logger_path, "a", newline="") as f:
|
282 |
-
csvwriter = csv.writer(f, delimiter=",")
|
283 |
-
|
284 |
-
# Write header row if the file is newly created
|
285 |
-
if not file_exists:
|
286 |
-
header = ["Language", "Prefix", "Input", "Context", "Output", "F1", "Em"]
|
287 |
-
csvwriter.writerow(header)
|
288 |
-
|
289 |
-
csvwriter.writerow(
|
290 |
-
[
|
291 |
-
lang,
|
292 |
-
config["prefix"],
|
293 |
-
config["input"],
|
294 |
-
config["context"][0],
|
295 |
-
config["output"],
|
296 |
-
f1,
|
297 |
-
em,
|
298 |
-
]
|
299 |
-
)
|
300 |
-
|
301 |
-
|
302 |
-
def dump_predictions(idx, response, label, response_logger_file):
|
303 |
-
obj = {"q_idx": idx, "prediction": response, "label": label}
|
304 |
-
with open(response_logger_file, "a") as f:
|
305 |
-
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
|
306 |
-
|
307 |
-
|
308 |
-
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
309 |
-
translator = EasyGoogleTranslate(
|
310 |
-
source_language="en",
|
311 |
-
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
312 |
-
timeout=50,
|
313 |
-
)
|
314 |
-
return translator.translate(basic_instruction)
|
315 |
-
|
316 |
-
|
317 |
-
def _translate_prediction_to_output_language(
|
318 |
-
prediction: str, prediction_language: str, output_language: str
|
319 |
-
) -> str:
|
320 |
-
translator = EasyGoogleTranslate(
|
321 |
-
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
322 |
-
target_language=LANGUAGE_TO_SUFFIX[output_language],
|
323 |
-
timeout=10,
|
324 |
-
)
|
325 |
-
return translator.translate(prediction)
|
326 |
-
|
327 |
-
|
328 |
-
def create_instruction(lang: str, expected_output: str):
|
329 |
-
basic_instruction = (
|
330 |
-
"Answer to the <Question> below, based only to the given <Context>, Follow these instructions:\n"
|
331 |
-
"1. The answer should include only words from the given context\n"
|
332 |
-
"2. The answer must include up to 5 words\n"
|
333 |
-
"3. The answer Should be the shortest as possible\n"
|
334 |
-
f"4. The answer must be in {expected_output} only!, not another language!!!"
|
335 |
-
)
|
336 |
-
return (
|
337 |
-
basic_instruction
|
338 |
-
if lang == "english"
|
339 |
-
else _translate_instruction(basic_instruction, target_language=lang)
|
340 |
-
)
|
341 |
-
|
342 |
-
|
343 |
-
def _translate_example(
|
344 |
-
example: Dict[str, str], src_language: str, target_language: str
|
345 |
-
):
|
346 |
-
translator = EasyGoogleTranslate(
|
347 |
-
source_language=LANGUAGE_TO_SUFFIX[str(src_language).lower()],
|
348 |
-
target_language=LANGUAGE_TO_SUFFIX[str(target_language).lower()],
|
349 |
-
timeout=30,
|
350 |
-
)
|
351 |
-
|
352 |
-
return {
|
353 |
-
"question": translator.translate(example["question"]),
|
354 |
-
"context": translator.translate(example["context"][:2000])
|
355 |
-
+ translator.translate(example["context"][2000:4000])
|
356 |
-
+ translator.translate(example["context"][4000:6000]),
|
357 |
-
"answers": translator.translate(example["answers"][0]),
|
358 |
-
}
|
359 |
-
# except Exception as e:
|
360 |
-
# print(example["text"])
|
361 |
-
# print(example["summary"])
|
362 |
-
# print(e)
|
363 |
-
|
364 |
-
|
365 |
-
def choose_few_shot_examples(
|
366 |
-
train_dataset: Dataset,
|
367 |
-
few_shot_size: int,
|
368 |
-
context: List[str],
|
369 |
-
selection_criteria: str,
|
370 |
-
lang: str,
|
371 |
-
) -> List[Dict[str, Union[str, int]]]:
|
372 |
-
"""Selects few-shot examples from training datasets
|
373 |
-
|
374 |
-
Args:
|
375 |
-
train_dataset (Dataset): Training Dataset
|
376 |
-
few_shot_size (int): Number of few-shot examples
|
377 |
-
selection_criteria (few_shot_selection): How to select few-shot examples. Choices: [random, first_k]
|
378 |
-
|
379 |
-
Returns:
|
380 |
-
List[Dict[str, Union[str, int]]]: Selected examples
|
381 |
-
"""
|
382 |
-
selected_examples = []
|
383 |
-
|
384 |
-
example_idxs = []
|
385 |
-
if selection_criteria == "first_k":
|
386 |
-
example_idxs = list(range(few_shot_size))
|
387 |
-
elif selection_criteria == "random":
|
388 |
-
example_idxs = (
|
389 |
-
np.random.choice(len(train_dataset), size=few_shot_size, replace=True)
|
390 |
-
.astype(int)
|
391 |
-
.tolist()
|
392 |
-
)
|
393 |
-
|
394 |
-
ic_examples = [
|
395 |
-
{
|
396 |
-
"question": train_dataset[idx]["question"],
|
397 |
-
"context": train_dataset[idx]["context"],
|
398 |
-
"answers": train_dataset[idx]["answers"]["text"],
|
399 |
-
}
|
400 |
-
for idx in example_idxs
|
401 |
-
]
|
402 |
-
|
403 |
-
for idx, ic_language in enumerate(context):
|
404 |
-
(
|
405 |
-
selected_examples.append(ic_examples[idx])
|
406 |
-
if ic_language == lang
|
407 |
-
else (
|
408 |
-
selected_examples.append(
|
409 |
-
_translate_example(
|
410 |
-
example=ic_examples[idx],
|
411 |
-
src_language=lang,
|
412 |
-
target_language=ic_language,
|
413 |
-
)
|
414 |
-
)
|
415 |
-
)
|
416 |
-
)
|
417 |
-
|
418 |
-
return selected_examples
|
419 |
-
|
420 |
-
|
421 |
-
def normalize_answer(s):
|
422 |
-
"""Lower text and remove punctuation, articles and extra whitespace."""
|
423 |
-
|
424 |
-
def remove_articles(text):
|
425 |
-
return re.sub(r"\b(a|an|the)\b", " ", text)
|
426 |
-
|
427 |
-
def white_space_fix(text):
|
428 |
-
return " ".join(text.split())
|
429 |
-
|
430 |
-
def remove_punc(text):
|
431 |
-
exclude = set(PUNCT) # set(string.punctuation)
|
432 |
-
return "".join(ch for ch in text if ch not in exclude)
|
433 |
-
|
434 |
-
def lower(text):
|
435 |
-
return text.lower()
|
436 |
-
|
437 |
-
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
438 |
-
|
439 |
-
|
440 |
-
def process_test_example(
|
441 |
-
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
442 |
-
):
|
443 |
-
try:
|
444 |
-
# Your existing code for processing each test example
|
445 |
-
instruction = create_instruction(
|
446 |
-
lang=config["prefix"], expected_output=config["output"]
|
447 |
-
)
|
448 |
-
text_example = {
|
449 |
-
"question": test_example["question"],
|
450 |
-
"context": test_example["context"],
|
451 |
-
"answers": test_example["answers"]["text"],
|
452 |
-
}
|
453 |
-
|
454 |
-
ic_examples = []
|
455 |
-
if not zero_shot:
|
456 |
-
ic_examples = choose_few_shot_examples(
|
457 |
-
train_dataset=test_data,
|
458 |
-
few_shot_size=len(config["context"]),
|
459 |
-
context=config["context"],
|
460 |
-
selection_criteria="random",
|
461 |
-
lang=params["selected_language"],
|
462 |
-
)
|
463 |
-
|
464 |
-
prompt, label = construct_prompt(
|
465 |
-
instruction=instruction,
|
466 |
-
test_example=text_example,
|
467 |
-
ic_examples=ic_examples,
|
468 |
-
zero_shot=zero_shot,
|
469 |
-
lang=lang,
|
470 |
-
config=config,
|
471 |
-
)
|
472 |
-
|
473 |
-
pred = gpt3x_completion(prompt=prompt)
|
474 |
-
print(pred)
|
475 |
-
|
476 |
-
logger.info("Saving prediction to persistent volume")
|
477 |
-
os.makedirs(
|
478 |
-
f"{params['response_logger_root']}/{params['model']}/{lang}", exist_ok=True
|
479 |
-
)
|
480 |
-
dump_predictions(
|
481 |
-
idx=idx,
|
482 |
-
response=pred,
|
483 |
-
label=label,
|
484 |
-
response_logger_file=f"{params['response_logger_root']}/{params['model']}/{lang}/{config_header}.csv",
|
485 |
-
)
|
486 |
-
except Exception as e:
|
487 |
-
# Handle exceptions here
|
488 |
-
print(f"Error processing example {idx}: {e}")
|
489 |
-
|
490 |
-
|
491 |
-
def run_one_configuration(selected_language, config, zero_shot, dataset_name, limit=10):
|
492 |
-
test_data = load_qa_dataset(
|
493 |
-
dataset_name=dataset_name,
|
494 |
-
lang=selected_language,
|
495 |
-
split="validation" if dataset_name == "xquad" else "test",
|
496 |
-
limit=limit,
|
497 |
-
)
|
498 |
-
|
499 |
-
for idx, test_example in (pbar := tqdm(enumerate(test_data))):
|
500 |
-
try:
|
501 |
-
instruction = create_instruction(
|
502 |
-
lang=config["prefix"], expected_output=config["output"]
|
503 |
-
)
|
504 |
-
text_example = {
|
505 |
-
"question": test_example["question"],
|
506 |
-
"context": test_example["context"],
|
507 |
-
"answers": test_example["answers"]["text"],
|
508 |
-
}
|
509 |
-
|
510 |
-
ic_examples = []
|
511 |
-
if not zero_shot:
|
512 |
-
ic_examples = choose_few_shot_examples(
|
513 |
-
train_dataset=test_data,
|
514 |
-
few_shot_size=len(config["context"]),
|
515 |
-
context=config["context"],
|
516 |
-
selection_criteria="random",
|
517 |
-
lang=selected_language,
|
518 |
-
)
|
519 |
-
|
520 |
-
prompt, label = construct_prompt(
|
521 |
-
instruction=instruction,
|
522 |
-
test_example=text_example,
|
523 |
-
ic_examples=ic_examples,
|
524 |
-
zero_shot=zero_shot,
|
525 |
-
lang=selected_language,
|
526 |
-
config=config,
|
527 |
-
)
|
528 |
-
|
529 |
-
pred = gpt3x_completion(prompt=prompt)
|
530 |
-
|
531 |
-
return pred
|
532 |
-
|
533 |
-
except Exception as e:
|
534 |
-
print(f"Found an exception {e}, continue to the next example")
|
535 |
-
continue
|
536 |
-
|
537 |
|
538 |
QA = "QA"
|
539 |
SUMMARIZATION = "Summarization"
|
@@ -541,8 +22,16 @@ NLI = "NLI"
|
|
541 |
NER = "NER"
|
542 |
|
543 |
|
544 |
-
def construct_generic_prompt(
|
545 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
print(task)
|
547 |
if task == SUMMARIZATION:
|
548 |
prompt = summarization.construct_prompt(
|
@@ -588,30 +77,36 @@ def construct_generic_prompt(task, instruction, test_example, zero_shot, num_exa
|
|
588 |
|
589 |
def _get_language_type(language: str):
|
590 |
df = pd.read_csv("utils/languages_by_word_count.csv")
|
591 |
-
number_of_words = df[df[
|
592 |
print(number_of_words)
|
593 |
return LanguageType.Low if number_of_words < 150276400 else LanguageType.High
|
594 |
|
595 |
|
596 |
class Config:
|
597 |
-
def __init__(
|
|
|
|
|
598 |
self.prefix = prefix
|
599 |
self.context = context
|
600 |
self.examples = examples
|
601 |
self.output = output
|
602 |
|
603 |
def set(self, prefix=None, context=None, examples=None, output=None):
|
604 |
-
if prefix:
|
605 |
-
|
606 |
-
if
|
607 |
-
|
|
|
|
|
|
|
|
|
608 |
|
609 |
def to_dict(self):
|
610 |
return {
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
}
|
616 |
|
617 |
|
@@ -622,22 +117,22 @@ def recommend_config(task, lang, model_type):
|
|
622 |
if model_type == ModelType.English.value:
|
623 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
624 |
else:
|
625 |
-
config.set(prefix=
|
626 |
if task == NER:
|
627 |
if model_type == ModelType.English.value:
|
628 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
629 |
elif language_type == LanguageType.High:
|
630 |
-
config.set(prefix=
|
631 |
else:
|
632 |
-
config.set(prefix=
|
633 |
if task == NLI:
|
634 |
if model_type == ModelType.English.value:
|
635 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
636 |
elif language_type == LanguageType.High:
|
637 |
-
config.set(prefix=
|
638 |
else:
|
639 |
-
config.set(prefix=
|
640 |
if task == SUMMARIZATION:
|
641 |
-
config.set(context=
|
642 |
print(config.to_dict())
|
643 |
return config.to_dict()
|
|
|
|
|
|
|
1 |
import enum
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
from tasks import ner, nli, qa, summarization
|
6 |
|
7 |
|
|
|
|
|
8 |
class LanguageType(enum.Enum):
|
9 |
Low = "Low"
|
10 |
High = "High"
|
|
|
15 |
Multilingual = "Multilingual"
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
QA = "QA"
|
20 |
SUMMARIZATION = "Summarization"
|
|
|
22 |
NER = "NER"
|
23 |
|
24 |
|
25 |
+
def construct_generic_prompt(
|
26 |
+
task,
|
27 |
+
instruction,
|
28 |
+
test_example,
|
29 |
+
zero_shot,
|
30 |
+
num_examples,
|
31 |
+
selected_language,
|
32 |
+
dataset,
|
33 |
+
config,
|
34 |
+
):
|
35 |
print(task)
|
36 |
if task == SUMMARIZATION:
|
37 |
prompt = summarization.construct_prompt(
|
|
|
77 |
|
78 |
def _get_language_type(language: str):
|
79 |
df = pd.read_csv("utils/languages_by_word_count.csv")
|
80 |
+
number_of_words = df[df["Language"] == language]["number of words"].iloc[0]
|
81 |
print(number_of_words)
|
82 |
return LanguageType.Low if number_of_words < 150276400 else LanguageType.High
|
83 |
|
84 |
|
85 |
class Config:
|
86 |
+
def __init__(
|
87 |
+
self, prefix="source", context="source", examples="source", output="source"
|
88 |
+
):
|
89 |
self.prefix = prefix
|
90 |
self.context = context
|
91 |
self.examples = examples
|
92 |
self.output = output
|
93 |
|
94 |
def set(self, prefix=None, context=None, examples=None, output=None):
|
95 |
+
if prefix:
|
96 |
+
self.prefix = prefix
|
97 |
+
if context:
|
98 |
+
self.context = context
|
99 |
+
if examples:
|
100 |
+
self.examples = examples
|
101 |
+
if output:
|
102 |
+
self.output = output
|
103 |
|
104 |
def to_dict(self):
|
105 |
return {
|
106 |
+
"instruction": self.prefix,
|
107 |
+
"context": self.context,
|
108 |
+
"examples": self.examples,
|
109 |
+
"output": self.output,
|
110 |
}
|
111 |
|
112 |
|
|
|
117 |
if model_type == ModelType.English.value:
|
118 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
119 |
else:
|
120 |
+
config.set(prefix="English", context=lang, examples=lang, output=lang)
|
121 |
if task == NER:
|
122 |
if model_type == ModelType.English.value:
|
123 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
124 |
elif language_type == LanguageType.High:
|
125 |
+
config.set(prefix="English", context=lang, examples=lang, output=lang)
|
126 |
else:
|
127 |
+
config.set(prefix="English", context=lang, examples=lang, output="English")
|
128 |
if task == NLI:
|
129 |
if model_type == ModelType.English.value:
|
130 |
config.set(prefix=lang, context=lang, examples=lang, output=lang)
|
131 |
elif language_type == LanguageType.High:
|
132 |
+
config.set(prefix="English", context=lang, examples="English")
|
133 |
else:
|
134 |
+
config.set(prefix="English", context="English", examples="English")
|
135 |
if task == SUMMARIZATION:
|
136 |
+
config.set(context="English")
|
137 |
print(config.to_dict())
|
138 |
return config.to_dict()
|
tasks/ner.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
-
from typing import
|
2 |
|
3 |
import numpy as np
|
4 |
-
from datasets import
|
5 |
from easygoogletranslate import EasyGoogleTranslate
|
6 |
-
from langchain.prompts import
|
7 |
|
8 |
LANGAUGE_TO_PREFIX = {
|
9 |
-
|
10 |
"chinese_simplified": "zh-CN",
|
11 |
-
"french": "fr",
|
12 |
-
"portuguese": "pt",
|
13 |
-
"english": "en",
|
14 |
"arabic": "ar",
|
15 |
"hindi": "hi",
|
16 |
"indonesian": "id",
|
@@ -31,7 +27,6 @@ LANGAUGE_TO_PREFIX = {
|
|
31 |
"greek": "el",
|
32 |
"tamil": "ta",
|
33 |
"assamese": "as",
|
34 |
-
"vietnamese": "vi",
|
35 |
"russian": "ru",
|
36 |
"romanian": "ro",
|
37 |
"malayalam": "ml",
|
@@ -39,16 +34,13 @@ LANGAUGE_TO_PREFIX = {
|
|
39 |
"bulgarian": "bg",
|
40 |
"thai": "th",
|
41 |
"urdu": "ur",
|
42 |
-
"italian": "it",
|
43 |
"polish": "pl",
|
44 |
"dutch": "nl",
|
45 |
-
"swedish": "sv",
|
46 |
"danish": "da",
|
47 |
"norwegian": "no",
|
48 |
"finnish": "fi",
|
49 |
"hungarian": "hu",
|
50 |
"czech": "cs",
|
51 |
-
"slovak": "sk",
|
52 |
"ukrainian": "uk",
|
53 |
"bambara": "bam",
|
54 |
"ewe": "ewe",
|
@@ -67,10 +59,9 @@ LANGAUGE_TO_PREFIX = {
|
|
67 |
"portuguese": "pt",
|
68 |
"chinese": "zh",
|
69 |
"english": "en",
|
70 |
-
"french": "fr"
|
71 |
}
|
72 |
|
73 |
-
|
74 |
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
75 |
translator = EasyGoogleTranslate(
|
76 |
source_language="en",
|
@@ -104,7 +95,7 @@ def load_wikiann_dataset(lang, split, limit):
|
|
104 |
|
105 |
|
106 |
def _translate_example(
|
107 |
-
|
108 |
):
|
109 |
translator = EasyGoogleTranslate(
|
110 |
source_language=LANGAUGE_TO_PREFIX[src_language],
|
@@ -114,16 +105,16 @@ def _translate_example(
|
|
114 |
|
115 |
return {
|
116 |
"tokens": translator.translate(str(example["tokens"])),
|
117 |
-
"ner_tags": translator.translate(str(example["ner_tags"]))
|
118 |
}
|
119 |
|
120 |
|
121 |
def choose_few_shot_examples(
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
) -> List[Dict[str, Union[str, int]]]:
|
128 |
"""Selects few-shot examples from training datasets
|
129 |
|
@@ -150,10 +141,7 @@ def choose_few_shot_examples(
|
|
150 |
ic_examples = [train_dataset[idx] for idx in example_idxs]
|
151 |
|
152 |
ic_examples = [
|
153 |
-
{
|
154 |
-
"tokens": ' '.join(example['tokens']),
|
155 |
-
"ner_tags": example['spans']
|
156 |
-
}
|
157 |
for example in ic_examples
|
158 |
]
|
159 |
|
@@ -185,7 +173,7 @@ def construct_prompt(
|
|
185 |
config: Dict[str, str],
|
186 |
):
|
187 |
if not instruction:
|
188 |
-
instruction = create_instruction(lang, config[
|
189 |
|
190 |
example_prompt = PromptTemplate(
|
191 |
input_variables=["tokens", "ner_tags"],
|
@@ -197,8 +185,9 @@ def construct_prompt(
|
|
197 |
try:
|
198 |
test_data = load_wikiann_dataset(lang=lang, split="test", limit=500)
|
199 |
except Exception as e:
|
200 |
-
raise KeyError(
|
201 |
-
|
|
|
202 |
|
203 |
ic_examples = []
|
204 |
if not zero_shot:
|
|
|
1 |
+
from typing import Dict, List, Union
|
2 |
|
3 |
import numpy as np
|
4 |
+
from datasets import Dataset, load_dataset
|
5 |
from easygoogletranslate import EasyGoogleTranslate
|
6 |
+
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
7 |
|
8 |
LANGAUGE_TO_PREFIX = {
|
|
|
9 |
"chinese_simplified": "zh-CN",
|
|
|
|
|
|
|
10 |
"arabic": "ar",
|
11 |
"hindi": "hi",
|
12 |
"indonesian": "id",
|
|
|
27 |
"greek": "el",
|
28 |
"tamil": "ta",
|
29 |
"assamese": "as",
|
|
|
30 |
"russian": "ru",
|
31 |
"romanian": "ro",
|
32 |
"malayalam": "ml",
|
|
|
34 |
"bulgarian": "bg",
|
35 |
"thai": "th",
|
36 |
"urdu": "ur",
|
|
|
37 |
"polish": "pl",
|
38 |
"dutch": "nl",
|
|
|
39 |
"danish": "da",
|
40 |
"norwegian": "no",
|
41 |
"finnish": "fi",
|
42 |
"hungarian": "hu",
|
43 |
"czech": "cs",
|
|
|
44 |
"ukrainian": "uk",
|
45 |
"bambara": "bam",
|
46 |
"ewe": "ewe",
|
|
|
59 |
"portuguese": "pt",
|
60 |
"chinese": "zh",
|
61 |
"english": "en",
|
62 |
+
"french": "fr",
|
63 |
}
|
64 |
|
|
|
65 |
def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
66 |
translator = EasyGoogleTranslate(
|
67 |
source_language="en",
|
|
|
95 |
|
96 |
|
97 |
def _translate_example(
|
98 |
+
example: Dict[str, str], src_language: str, target_language: str
|
99 |
):
|
100 |
translator = EasyGoogleTranslate(
|
101 |
source_language=LANGAUGE_TO_PREFIX[src_language],
|
|
|
105 |
|
106 |
return {
|
107 |
"tokens": translator.translate(str(example["tokens"])),
|
108 |
+
"ner_tags": translator.translate(str(example["ner_tags"])),
|
109 |
}
|
110 |
|
111 |
|
112 |
def choose_few_shot_examples(
|
113 |
+
train_dataset: Dataset,
|
114 |
+
few_shot_size: int,
|
115 |
+
context: List[str],
|
116 |
+
selection_criteria: str,
|
117 |
+
lang: str,
|
118 |
) -> List[Dict[str, Union[str, int]]]:
|
119 |
"""Selects few-shot examples from training datasets
|
120 |
|
|
|
141 |
ic_examples = [train_dataset[idx] for idx in example_idxs]
|
142 |
|
143 |
ic_examples = [
|
144 |
+
{"tokens": " ".join(example["tokens"]), "ner_tags": example["spans"]}
|
|
|
|
|
|
|
145 |
for example in ic_examples
|
146 |
]
|
147 |
|
|
|
173 |
config: Dict[str, str],
|
174 |
):
|
175 |
if not instruction:
|
176 |
+
instruction = create_instruction(lang, config["prefix"], config["output"])
|
177 |
|
178 |
example_prompt = PromptTemplate(
|
179 |
input_variables=["tokens", "ner_tags"],
|
|
|
185 |
try:
|
186 |
test_data = load_wikiann_dataset(lang=lang, split="test", limit=500)
|
187 |
except Exception as e:
|
188 |
+
raise KeyError(
|
189 |
+
f"{lang} is not supported in 'wikiAnn' dataset, choose supported language in few-shot"
|
190 |
+
)
|
191 |
|
192 |
ic_examples = []
|
193 |
if not zero_shot:
|
tasks/nli.py
CHANGED
@@ -32,9 +32,7 @@ LANGUAGE_TO_SUFFIX = {
|
|
32 |
"spanish": "es",
|
33 |
"chinese": "zh",
|
34 |
"greek": "el",
|
35 |
-
"german": "de"
|
36 |
-
|
37 |
-
|
38 |
}
|
39 |
|
40 |
NUMBER_TO_TAG = {0: "entailment", 1: "neutral", 2: "contradiction"}
|
@@ -42,9 +40,6 @@ NUMBER_TO_TAG = {0: "entailment", 1: "neutral", 2: "contradiction"}
|
|
42 |
PARAMS = NewType("PARAMS", Dict[str, Any])
|
43 |
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
def read_parameters(args_path) -> PARAMS:
|
49 |
with open(args_path) as f:
|
50 |
args = yaml.load(f, Loader=SafeLoader)
|
@@ -278,7 +273,7 @@ def create_instruction(lang: str):
|
|
278 |
)
|
279 |
|
280 |
|
281 |
-
def run_one_configuration(params: Optional[PARAMS] = None, zero: bool= False):
|
282 |
if not params:
|
283 |
params = read_parameters("../../parameters.yaml")
|
284 |
|
@@ -320,6 +315,7 @@ def run_one_configuration(params: Optional[PARAMS] = None, zero: bool= False):
|
|
320 |
pool.close()
|
321 |
pool.join()
|
322 |
|
|
|
323 |
def process_test_example(
|
324 |
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
325 |
):
|
@@ -348,7 +344,9 @@ def process_test_example(
|
|
348 |
zero_shot=zero_shot,
|
349 |
)
|
350 |
|
351 |
-
pred = get_prediction(
|
|
|
|
|
352 |
print(pred)
|
353 |
|
354 |
os.makedirs(
|
@@ -367,13 +365,13 @@ def process_test_example(
|
|
367 |
|
368 |
|
369 |
def construct_prompt(
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
):
|
378 |
if not instruction:
|
379 |
print(lang)
|
@@ -385,13 +383,15 @@ def construct_prompt(
|
|
385 |
)
|
386 |
|
387 |
zero_shot_template = (
|
388 |
-
|
389 |
)
|
390 |
if not zero_shot:
|
391 |
try:
|
392 |
test_data = load_xnli_dataset(dataset_name, lang, split="test", limit=100)
|
393 |
except KeyError as e:
|
394 |
-
raise KeyError(
|
|
|
|
|
395 |
|
396 |
ic_examples = []
|
397 |
if not zero_shot:
|
@@ -425,4 +425,5 @@ def construct_prompt(
|
|
425 |
)
|
426 |
|
427 |
return prompt.format(
|
428 |
-
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
|
|
|
|
32 |
"spanish": "es",
|
33 |
"chinese": "zh",
|
34 |
"greek": "el",
|
35 |
+
"german": "de",
|
|
|
|
|
36 |
}
|
37 |
|
38 |
NUMBER_TO_TAG = {0: "entailment", 1: "neutral", 2: "contradiction"}
|
|
|
40 |
PARAMS = NewType("PARAMS", Dict[str, Any])
|
41 |
|
42 |
|
|
|
|
|
|
|
43 |
def read_parameters(args_path) -> PARAMS:
|
44 |
with open(args_path) as f:
|
45 |
args = yaml.load(f, Loader=SafeLoader)
|
|
|
273 |
)
|
274 |
|
275 |
|
276 |
+
def run_one_configuration(params: Optional[PARAMS] = None, zero: bool = False):
|
277 |
if not params:
|
278 |
params = read_parameters("../../parameters.yaml")
|
279 |
|
|
|
315 |
pool.close()
|
316 |
pool.join()
|
317 |
|
318 |
+
|
319 |
def process_test_example(
|
320 |
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
321 |
):
|
|
|
344 |
zero_shot=zero_shot,
|
345 |
)
|
346 |
|
347 |
+
pred = get_prediction(
|
348 |
+
prompt=prompt, endpoint_id=7327255438662041600, project_id=16514800572
|
349 |
+
)
|
350 |
print(pred)
|
351 |
|
352 |
os.makedirs(
|
|
|
365 |
|
366 |
|
367 |
def construct_prompt(
|
368 |
+
instruction: str,
|
369 |
+
test_example: dict,
|
370 |
+
zero_shot: bool,
|
371 |
+
num_examples: int,
|
372 |
+
lang: str,
|
373 |
+
config: Dict[str, str],
|
374 |
+
dataset_name: str = "xnli",
|
375 |
):
|
376 |
if not instruction:
|
377 |
print(lang)
|
|
|
383 |
)
|
384 |
|
385 |
zero_shot_template = (
|
386 |
+
f"""{instruction}""" + "\n Hypothesis: {hypothesis} + \n Premise: {premise}" ""
|
387 |
)
|
388 |
if not zero_shot:
|
389 |
try:
|
390 |
test_data = load_xnli_dataset(dataset_name, lang, split="test", limit=100)
|
391 |
except KeyError as e:
|
392 |
+
raise KeyError(
|
393 |
+
f"{lang} is not supported in {dataset_name} dataset, choose supported language in few-shot"
|
394 |
+
)
|
395 |
|
396 |
ic_examples = []
|
397 |
if not zero_shot:
|
|
|
425 |
)
|
426 |
|
427 |
return prompt.format(
|
428 |
+
hypothesis=test_example["hypothesis"], premise=test_example["premise"]
|
429 |
+
)
|
tasks/qa.py
CHANGED
@@ -10,8 +10,6 @@ import unicodedata
|
|
10 |
from typing import Any, Dict, List, NewType, Optional, Union
|
11 |
|
12 |
import numpy as np
|
13 |
-
import openai
|
14 |
-
import requests
|
15 |
import yaml
|
16 |
from datasets import Dataset, load_dataset
|
17 |
from easygoogletranslate import EasyGoogleTranslate
|
@@ -20,52 +18,6 @@ from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
|
20 |
from tqdm import tqdm
|
21 |
from yaml.loader import SafeLoader
|
22 |
|
23 |
-
|
24 |
-
# from models.model_completion import gpt3x_completion, gemini_completion
|
25 |
-
|
26 |
-
def gemini_completion(prompt):
|
27 |
-
# Define the endpoint URL
|
28 |
-
genai.configure(api_key="")
|
29 |
-
model = genai.GenerativeModel("models/gemini-1.0-pro-latest")
|
30 |
-
return model.generate_content(prompt).text
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
def get_entities_gpt3_long(prompt):
|
35 |
-
response = openai.ChatCompletion.create(
|
36 |
-
engine="chatgpt", temperature=0, messages=[{"role": "user", "content": prompt}]
|
37 |
-
)
|
38 |
-
return response["choices"][0]["message"]["content"]
|
39 |
-
|
40 |
-
|
41 |
-
def gpt3x_completion(
|
42 |
-
prompt: Union[str, List[Dict[str, str]]],
|
43 |
-
model: str = "chatgpt",
|
44 |
-
# run_details: Any = {},
|
45 |
-
# num_evals_per_sec: int = 2,
|
46 |
-
# **model_params,
|
47 |
-
) -> str:
|
48 |
-
import openai
|
49 |
-
def get_entities_chatGPT(final_prompt):
|
50 |
-
response = openai.ChatCompletion.create(
|
51 |
-
engine="gpt35-16k",
|
52 |
-
temperature=0,
|
53 |
-
messages=[
|
54 |
-
{"role": "user", "content": final_prompt}
|
55 |
-
]
|
56 |
-
)
|
57 |
-
return response['choices'][0]['message']['content']
|
58 |
-
|
59 |
-
return get_entities_chatGPT(final_prompt=prompt)
|
60 |
-
|
61 |
-
|
62 |
-
def mt0_completion(prompt):
|
63 |
-
inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
|
64 |
-
outputs = model.generate(inputs)
|
65 |
-
return tokenizer.decode(outputs[0])
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
XQUAD_LANG2CODES = {
|
70 |
"bengali": "bn",
|
71 |
"korean": "ko",
|
@@ -164,7 +116,7 @@ LANGUAGE_TO_SUFFIX = {
|
|
164 |
"hungarian": "hu",
|
165 |
"czech": "cs",
|
166 |
"slovak": "sk",
|
167 |
-
"ukrainian": "uk"
|
168 |
}
|
169 |
|
170 |
|
@@ -215,20 +167,21 @@ def load_qa_dataset(dataset_name, lang, split, translate_test=False, limit=5):
|
|
215 |
|
216 |
|
217 |
def construct_prompt(
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
):
|
225 |
example_prompt = PromptTemplate(
|
226 |
input_variables=["context", "question", "answers"],
|
227 |
-
template="Context: {context} \n Question: {question} \n "
|
|
|
228 |
)
|
229 |
|
230 |
zero_shot_template = (
|
231 |
-
|
232 |
)
|
233 |
|
234 |
prompt = (
|
@@ -260,7 +213,7 @@ def construct_prompt(
|
|
260 |
|
261 |
|
262 |
def dump_metrics(
|
263 |
-
|
264 |
):
|
265 |
# Check if the metric logger file exists
|
266 |
file_exists = os.path.exists(metric_logger_path)
|
@@ -303,7 +256,7 @@ def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
|
303 |
|
304 |
|
305 |
def _translate_prediction_to_output_language(
|
306 |
-
|
307 |
) -> str:
|
308 |
translator = EasyGoogleTranslate(
|
309 |
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
@@ -329,7 +282,7 @@ def create_instruction(lang: str, instruction_language: str, expected_output):
|
|
329 |
|
330 |
|
331 |
def _translate_example(
|
332 |
-
|
333 |
):
|
334 |
translator = EasyGoogleTranslate(
|
335 |
source_language=LANGUAGE_TO_SUFFIX[src_language],
|
@@ -340,19 +293,20 @@ def _translate_example(
|
|
340 |
return {
|
341 |
"question": translator.translate(example["question"]),
|
342 |
"context": translator.translate(example["context"][:2000])
|
343 |
-
|
344 |
-
|
345 |
"answers": "",
|
346 |
}
|
347 |
except Exception as e:
|
348 |
pass
|
349 |
|
|
|
350 |
def choose_few_shot_examples(
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
) -> List[Dict[str, Union[str, int]]]:
|
357 |
"""Selects few-shot examples from training datasets
|
358 |
|
@@ -423,7 +377,7 @@ def normalize_answer(s):
|
|
423 |
|
424 |
|
425 |
def process_test_example(
|
426 |
-
|
427 |
):
|
428 |
try:
|
429 |
# Your existing code for processing each test example
|
@@ -456,7 +410,9 @@ def process_test_example(
|
|
456 |
)
|
457 |
|
458 |
print(len(prompt))
|
459 |
-
pred = get_prediction(
|
|
|
|
|
460 |
# pred = mixtral_completion(prompt)
|
461 |
print(pred)
|
462 |
|
@@ -551,10 +507,10 @@ def run_one_configuration(params: Optional[PARAMS] = None):
|
|
551 |
response=pred,
|
552 |
label=label,
|
553 |
response_logger_file=f"{params['response_logger_root']}"
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
)
|
559 |
|
560 |
except Exception as e:
|
@@ -572,7 +528,6 @@ def run_one_configuration(params: Optional[PARAMS] = None):
|
|
572 |
)
|
573 |
|
574 |
|
575 |
-
|
576 |
def run_one_configuration_paralle(params: Optional[PARAMS] = None, zero: bool = False):
|
577 |
if not params:
|
578 |
params = read_parameters("../../parameters.yaml")
|
@@ -624,7 +579,6 @@ def run_one_configuration_paralle(params: Optional[PARAMS] = None, zero: bool =
|
|
624 |
pool.join()
|
625 |
|
626 |
|
627 |
-
|
628 |
def construct_prompt(
|
629 |
instruction: str,
|
630 |
test_example: dict,
|
@@ -632,10 +586,10 @@ def construct_prompt(
|
|
632 |
num_examples: int,
|
633 |
lang: str,
|
634 |
config: Dict[str, str],
|
635 |
-
dataset_name: str =
|
636 |
):
|
637 |
if not instruction:
|
638 |
-
instruction = create_instruction(lang, config[
|
639 |
|
640 |
example_prompt = PromptTemplate(
|
641 |
input_variables=["context", "question", "answers"],
|
@@ -643,15 +597,16 @@ def construct_prompt(
|
|
643 |
)
|
644 |
|
645 |
zero_shot_template = (
|
646 |
-
|
647 |
)
|
648 |
if not zero_shot:
|
649 |
try:
|
650 |
-
test_data = load_qa_dataset(
|
|
|
|
|
651 |
except Exception as e:
|
652 |
raise KeyError(f"{lang} is not supported in {dataset_name}")
|
653 |
|
654 |
-
|
655 |
ic_examples = []
|
656 |
if not zero_shot:
|
657 |
|
@@ -677,12 +632,12 @@ def construct_prompt(
|
|
677 |
)
|
678 |
)
|
679 |
print("lang", lang)
|
680 |
-
print(config["input"]
|
681 |
if config["input"] != lang:
|
682 |
test_example = _translate_example(
|
683 |
example=test_example, src_language=lang, target_language=config["input"]
|
684 |
)
|
685 |
|
686 |
return prompt.format(
|
687 |
-
|
688 |
-
|
|
|
10 |
from typing import Any, Dict, List, NewType, Optional, Union
|
11 |
|
12 |
import numpy as np
|
|
|
|
|
13 |
import yaml
|
14 |
from datasets import Dataset, load_dataset
|
15 |
from easygoogletranslate import EasyGoogleTranslate
|
|
|
18 |
from tqdm import tqdm
|
19 |
from yaml.loader import SafeLoader
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
XQUAD_LANG2CODES = {
|
22 |
"bengali": "bn",
|
23 |
"korean": "ko",
|
|
|
116 |
"hungarian": "hu",
|
117 |
"czech": "cs",
|
118 |
"slovak": "sk",
|
119 |
+
"ukrainian": "uk",
|
120 |
}
|
121 |
|
122 |
|
|
|
167 |
|
168 |
|
169 |
def construct_prompt(
|
170 |
+
instruction: str,
|
171 |
+
test_example: dict,
|
172 |
+
ic_examples: List[dict],
|
173 |
+
zero_shot: bool,
|
174 |
+
lang: str,
|
175 |
+
config: Any,
|
176 |
):
|
177 |
example_prompt = PromptTemplate(
|
178 |
input_variables=["context", "question", "answers"],
|
179 |
+
template="Context: {context} \n Question: {question} \n "
|
180 |
+
"Answers: {answers}",
|
181 |
)
|
182 |
|
183 |
zero_shot_template = (
|
184 |
+
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
|
185 |
)
|
186 |
|
187 |
prompt = (
|
|
|
213 |
|
214 |
|
215 |
def dump_metrics(
|
216 |
+
lang: str, config: Dict[str, str], f1: float, em: float, metric_logger_path: str
|
217 |
):
|
218 |
# Check if the metric logger file exists
|
219 |
file_exists = os.path.exists(metric_logger_path)
|
|
|
256 |
|
257 |
|
258 |
def _translate_prediction_to_output_language(
|
259 |
+
prediction: str, prediction_language: str, output_language: str
|
260 |
) -> str:
|
261 |
translator = EasyGoogleTranslate(
|
262 |
source_language=LANGUAGE_TO_SUFFIX[prediction_language],
|
|
|
282 |
|
283 |
|
284 |
def _translate_example(
|
285 |
+
example: Dict[str, str], src_language: str, target_language: str
|
286 |
):
|
287 |
translator = EasyGoogleTranslate(
|
288 |
source_language=LANGUAGE_TO_SUFFIX[src_language],
|
|
|
293 |
return {
|
294 |
"question": translator.translate(example["question"]),
|
295 |
"context": translator.translate(example["context"][:2000])
|
296 |
+
+ translator.translate(example["context"][2000:4000])
|
297 |
+
+ translator.translate(example["context"][4000:6000]),
|
298 |
"answers": "",
|
299 |
}
|
300 |
except Exception as e:
|
301 |
pass
|
302 |
|
303 |
+
|
304 |
def choose_few_shot_examples(
|
305 |
+
train_dataset: Dataset,
|
306 |
+
few_shot_size: int,
|
307 |
+
context: List[str],
|
308 |
+
selection_criteria: str,
|
309 |
+
lang: str,
|
310 |
) -> List[Dict[str, Union[str, int]]]:
|
311 |
"""Selects few-shot examples from training datasets
|
312 |
|
|
|
377 |
|
378 |
|
379 |
def process_test_example(
|
380 |
+
test_data, config_header, idx, test_example, config, zero_shot, lang, params
|
381 |
):
|
382 |
try:
|
383 |
# Your existing code for processing each test example
|
|
|
410 |
)
|
411 |
|
412 |
print(len(prompt))
|
413 |
+
pred = get_prediction(
|
414 |
+
prompt=prompt, endpoint_id=7327255438662041600, project_id=16514800572
|
415 |
+
)
|
416 |
# pred = mixtral_completion(prompt)
|
417 |
print(pred)
|
418 |
|
|
|
507 |
response=pred,
|
508 |
label=label,
|
509 |
response_logger_file=f"{params['response_logger_root']}"
|
510 |
+
+ f"/{params['model']}"
|
511 |
+
+ f"/{lang}/"
|
512 |
+
+ config_header
|
513 |
+
+ ".csv",
|
514 |
)
|
515 |
|
516 |
except Exception as e:
|
|
|
528 |
)
|
529 |
|
530 |
|
|
|
531 |
def run_one_configuration_paralle(params: Optional[PARAMS] = None, zero: bool = False):
|
532 |
if not params:
|
533 |
params = read_parameters("../../parameters.yaml")
|
|
|
579 |
pool.join()
|
580 |
|
581 |
|
|
|
582 |
def construct_prompt(
|
583 |
instruction: str,
|
584 |
test_example: dict,
|
|
|
586 |
num_examples: int,
|
587 |
lang: str,
|
588 |
config: Dict[str, str],
|
589 |
+
dataset_name: str = "xquad",
|
590 |
):
|
591 |
if not instruction:
|
592 |
+
instruction = create_instruction(lang, config["prefix"], config["output"])
|
593 |
|
594 |
example_prompt = PromptTemplate(
|
595 |
input_variables=["context", "question", "answers"],
|
|
|
597 |
)
|
598 |
|
599 |
zero_shot_template = (
|
600 |
+
f"""{instruction}""" + " \n <Context>: {context} \n <Question>: {question} " ""
|
601 |
)
|
602 |
if not zero_shot:
|
603 |
try:
|
604 |
+
test_data = load_qa_dataset(
|
605 |
+
dataset_name=dataset_name, lang=lang, split="test", limit=100
|
606 |
+
)
|
607 |
except Exception as e:
|
608 |
raise KeyError(f"{lang} is not supported in {dataset_name}")
|
609 |
|
|
|
610 |
ic_examples = []
|
611 |
if not zero_shot:
|
612 |
|
|
|
632 |
)
|
633 |
)
|
634 |
print("lang", lang)
|
635 |
+
print(config["input"], lang)
|
636 |
if config["input"] != lang:
|
637 |
test_example = _translate_example(
|
638 |
example=test_example, src_language=lang, target_language=config["input"]
|
639 |
)
|
640 |
|
641 |
return prompt.format(
|
642 |
+
question=test_example["question"], context=test_example["context"]
|
643 |
+
)
|
tasks/summarization.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
from typing import
|
2 |
|
3 |
import numpy as np
|
4 |
from datasets import Dataset, load_dataset
|
5 |
from easygoogletranslate import EasyGoogleTranslate
|
6 |
-
from langchain.prompts import
|
7 |
|
8 |
LANGUAGE_TO_SUFFIX = {
|
9 |
"chinese_simplified": "zh-CN",
|
@@ -48,12 +48,16 @@ LANGUAGE_TO_SUFFIX = {
|
|
48 |
"hungarian": "hu",
|
49 |
"czech": "cs",
|
50 |
"slovak": "sk",
|
51 |
-
"ukrainian": "uk"
|
52 |
}
|
53 |
|
54 |
|
55 |
def choose_few_shot_examples(
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
) -> List[Dict[str, Union[str, int]]]:
|
58 |
selected_examples = []
|
59 |
|
@@ -67,13 +71,25 @@ def choose_few_shot_examples(
|
|
67 |
.tolist()
|
68 |
)
|
69 |
|
70 |
-
ic_examples = [
|
71 |
-
|
|
|
|
|
72 |
|
73 |
for idx, ic_language in enumerate(context):
|
74 |
-
|
75 |
-
selected_examples.append(
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
return selected_examples
|
79 |
|
@@ -87,12 +103,16 @@ def _translate_instruction(basic_instruction: str, target_language: str) -> str:
|
|
87 |
return translator.translate(basic_instruction)
|
88 |
|
89 |
|
90 |
-
def _translate_example(
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
try:
|
95 |
-
return {
|
96 |
except Exception as e:
|
97 |
print(e)
|
98 |
|
@@ -117,17 +137,17 @@ def load_xlsum_data(lang, split, limit=5):
|
|
117 |
|
118 |
|
119 |
def construct_prompt(
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
):
|
128 |
if not instruction:
|
129 |
print(lang)
|
130 |
-
instruction = create_instruction(lang, config[
|
131 |
|
132 |
example_prompt = PromptTemplate(
|
133 |
input_variables=["summary", "text"], template="Text: {text}\nSummary: {summary}"
|
@@ -139,7 +159,9 @@ def construct_prompt(
|
|
139 |
try:
|
140 |
test_data = load_xlsum_data(lang=lang, split="test", limit=100)
|
141 |
except Exception as e:
|
142 |
-
raise KeyError(
|
|
|
|
|
143 |
|
144 |
ic_examples = []
|
145 |
if not zero_shot:
|
|
|
1 |
+
from typing import Dict, List, Union
|
2 |
|
3 |
import numpy as np
|
4 |
from datasets import Dataset, load_dataset
|
5 |
from easygoogletranslate import EasyGoogleTranslate
|
6 |
+
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
|
7 |
|
8 |
LANGUAGE_TO_SUFFIX = {
|
9 |
"chinese_simplified": "zh-CN",
|
|
|
48 |
"hungarian": "hu",
|
49 |
"czech": "cs",
|
50 |
"slovak": "sk",
|
51 |
+
"ukrainian": "uk",
|
52 |
}
|
53 |
|
54 |
|
55 |
def choose_few_shot_examples(
|
56 |
+
train_dataset: Dataset,
|
57 |
+
few_shot_size: int,
|
58 |
+
context: List[str],
|
59 |
+
selection_criteria: str,
|
60 |
+
lang: str,
|
61 |
) -> List[Dict[str, Union[str, int]]]:
|
62 |
selected_examples = []
|
63 |
|
|
|
71 |
.tolist()
|
72 |
)
|
73 |
|
74 |
+
ic_examples = [
|
75 |
+
{"text": train_dataset[idx]["text"], "summary": train_dataset[idx]["summary"]}
|
76 |
+
for idx in example_idxs
|
77 |
+
]
|
78 |
|
79 |
for idx, ic_language in enumerate(context):
|
80 |
+
(
|
81 |
+
selected_examples.append(ic_examples[idx])
|
82 |
+
if ic_language == lang
|
83 |
+
else (
|
84 |
+
selected_examples.append(
|
85 |
+
_translate_example(
|
86 |
+
example=ic_examples[idx],
|
87 |
+
src_language=lang,
|
88 |
+
target_language=ic_language,
|
89 |
+
)
|
90 |
+
)
|
91 |
+
)
|
92 |
+
)
|
93 |
|
94 |
return selected_examples
|
95 |
|
|
|
103 |
return translator.translate(basic_instruction)
|
104 |
|
105 |
|
106 |
+
def _translate_example(
|
107 |
+
example: Dict[str, str], src_language: str, target_language: str
|
108 |
+
):
|
109 |
+
translator = EasyGoogleTranslate(
|
110 |
+
source_language=LANGUAGE_TO_SUFFIX[src_language],
|
111 |
+
target_language=LANGUAGE_TO_SUFFIX[target_language],
|
112 |
+
timeout=30,
|
113 |
+
)
|
114 |
try:
|
115 |
+
return {"text": translator.translate(example["text"]), "summary": ""}
|
116 |
except Exception as e:
|
117 |
print(e)
|
118 |
|
|
|
137 |
|
138 |
|
139 |
def construct_prompt(
|
140 |
+
instruction: str,
|
141 |
+
test_example: dict,
|
142 |
+
zero_shot: bool,
|
143 |
+
dataset: str,
|
144 |
+
num_examples: int,
|
145 |
+
lang: str,
|
146 |
+
config: Dict[str, str],
|
147 |
):
|
148 |
if not instruction:
|
149 |
print(lang)
|
150 |
+
instruction = create_instruction(lang, config["prefix"], config["output"])
|
151 |
|
152 |
example_prompt = PromptTemplate(
|
153 |
input_variables=["summary", "text"], template="Text: {text}\nSummary: {summary}"
|
|
|
159 |
try:
|
160 |
test_data = load_xlsum_data(lang=lang, split="test", limit=100)
|
161 |
except Exception as e:
|
162 |
+
raise KeyError(
|
163 |
+
f"{lang} is not supported in XlSum dataset, choose supported language in few-shot"
|
164 |
+
)
|
165 |
|
166 |
ic_examples = []
|
167 |
if not zero_shot:
|