File size: 6,140 Bytes
7dd9869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import argparse
import selfies as sf
from tqdm import tqdm
from transformers import set_seed
from src.scripts.mytokenizers import Tokenizer
from src.improved_diffusion import gaussian_diffusion as gd
from src.improved_diffusion import dist_util, logger
from src.improved_diffusion.respace import SpacedDiffusion
from src.improved_diffusion.transformer_model import TransformerNetModel
from src.improved_diffusion.script_util import (
    model_and_diffusion_defaults,
    add_dict_to_argparser,
)
from src.scripts.mydatasets import Lang2molDataset_submission


def main():
    set_seed(42)
    args = create_argparser().parse_args()

    # dist_util.setup_dist()
    logger.configure()
    args.sigma_small = True

    # args.diffusion_steps = 200 #500  # DEBUG

    if args.experiment == "random1":
        args.experiment = "random"
    logger.log("creating model and diffusion...")
    tokenizer = Tokenizer()
    model = TransformerNetModel(
        in_channels=args.model_in_channels,
        model_channels=args.model_model_channels,
        dropout=args.model_dropout,
        vocab_size=len(tokenizer),
        hidden_size=args.model_hidden_size,
        num_attention_heads=args.model_num_attention_heads,
        num_hidden_layers=args.model_num_hidden_layers,
    )
    model.eval()
    diffusion = SpacedDiffusion(
        use_timesteps=[i for i in range(0, args.diffusion_steps, 10)],
        betas=gd.get_named_beta_schedule("sqrt", args.diffusion_steps),
        model_mean_type=(gd.ModelMeanType.START_X),
        model_var_type=((gd.ModelVarType.FIXED_LARGE)),
        loss_type=gd.LossType.E2E_MSE,
        rescale_timesteps=True,
        model_arch="transformer",
        training_mode="e2e",
    )

    model.load_state_dict(
        dist_util.load_state_dict(args.model_path, map_location="cpu")
    )
    pytorch_total_params = sum(p.numel() for p in model.parameters())
    logger.log(f"the parameter count is {pytorch_total_params}")
    model.to(dist_util.dev())
    model.eval()

    logger.log("sampling...")
    print("--" * 30)
    print(f"Loading {args.split} set")
    print("--" * 30)

    validation_dataset = Lang2molDataset_submission(
        dir=args.dataset_path,
        tokenizer=tokenizer,
        split=args.split,
        corrupt_prob=0.0,
        token_max_length=args.token_max_length,
        dataset_name=args.dataset_name,
    )
    print("-------------------- DATASET INFO --------------------")
    print(f"Size: {len(validation_dataset)} samples")
    print(f'Sample shape: {validation_dataset[0]["caption_state"].shape}')

    print(f"Use DDIM: {args.use_ddim}")
    sample_fn = (
        diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
    )

    print(f"Batch size: {args.batch_size}")
    next_batch_start = args.start
    next_batch_end = next_batch_start + args.batch_size
    all_outputs = []
    all_caption = []
    pbar = tqdm(
        total=len(validation_dataset) // args.batch_size + 1
        if len(validation_dataset) % args.batch_size != 0
        else len(validation_dataset) // args.batch_size
    )
    while True:
        sample = [
            (
                validation_dataset[i]["caption_state"],
                validation_dataset[i]["caption_mask"],
                validation_dataset[i]["caption"],
            )
            for i in range(next_batch_start, next_batch_end)
        ]
        caption_state = torch.concat([i[0] for i in sample], dim=0)
        caption_mask = torch.concat([i[1] for i in sample], dim=0)
        caption = [i[2] for i in sample]

        outputs = sample_fn(
            model,
            (args.batch_size, 256, model.in_channels),
            clip_denoised=args.clip_denoised,
            denoised_fn=None,
            model_kwargs={},
            top_p=args.top_p,
            progress=True,
            caption=(caption_state, caption_mask),
        )

        logits = model.get_logits(torch.tensor(outputs).cuda())
        cands = torch.topk(logits, k=1, dim=-1)
        outputs = cands.indices
        outputs = outputs.squeeze(-1)
        outputs = tokenizer.decode(outputs)

        with open(args.outputdir, "a") as f:
            for i, x in enumerate(outputs):
                f.write(
                    sf.decoder(
                        x.replace("<pad>", "").replace("</s>", "").replace("\t", "")
                    ).replace("\t", "")
                    + "\n"
                )

        all_outputs += outputs
        all_caption += caption

        next_batch_start = next_batch_end
        next_batch_end = min(next_batch_end + args.batch_size, len(validation_dataset))
        pbar.update(1)

        if next_batch_start == len(validation_dataset):
            break

    with open(args.outputdir.replace(".txt", "_final.txt"), "w") as f:
        for i, x in enumerate(all_outputs):
            f.write(sf.decoder(x.replace("<pad>", "").replace("</s>", "")) + "\n")


def create_argparser():
    defaults = dict(
        clip_denoised=False,
        mbr_sample=1,
        model_path="",
        model_arch="conv-unet",
        verbose="yes",
    )
    text_defaults = dict(
        modality="text",
        dataset_name="language-plus-molecules/LPM-24_eval-molgen",
        dataset_config_name="wikitext-2-raw-v1",
        dataset_path="dataset",
        experiment="gpt2_pre_compress",
        model_arch="trans-unet",
        model_in_channels=32,
        model_model_channels=128,
        model_dropout=0.1,
        model_hidden_size=1024,
        model_num_attention_heads=16,
        model_num_hidden_layers=12,
        preprocessing_num_workers=1,
        emb_scale_factor=1.0,
        clamp="clamp",
        split="train",
        model_path="",
        use_ddim=False,
        batch_size=7,
        top_p=1.0,
        outputdir="output.txt",
        diffusion_steps=2000,
        token_max_length=256,
        start=0,
    )
    defaults.update(model_and_diffusion_defaults())
    defaults.update(text_defaults)
    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)
    return parser


if __name__ == "__main__":
    main()