# This Gradio demo code is from https://github.com/cvlab-kaist/locotrack/blob/main/demo/demo.py # We updated it to work with CoTracker3 models. We thank authors of LocoTrack # for such an amazing Gradio demo. import os import sys import uuid import gradio as gr import mediapy import numpy as np import cv2 import matplotlib import torch import colorsys import random from typing import List, Optional, Sequence, Tuple import spaces import numpy as np from visualizer import Visualizer from predictor import CoTrackerOnlinePredictor # Generate random colormaps for visualizing different points. def get_colors(num_colors: int) -> List[Tuple[int, int, int]]: """Gets colormap for points.""" colors = [] for i in np.arange(0.0, 360.0, 360.0 / num_colors): hue = i / 360.0 lightness = (50 + np.random.rand() * 10) / 100.0 saturation = (90 + np.random.rand() * 10) / 100.0 color = colorsys.hls_to_rgb(hue, lightness, saturation) colors.append((int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))) random.shuffle(colors) return colors def read_video_cv2(video_path): cap = cv2.VideoCapture(video_path) frames = [] # Get FPS from video metadata fps = cap.get(cv2.CAP_PROP_FPS) while cap.isOpened(): ret, frame = cap.read() if not ret: break # Convert BGR to RGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frames.append(frame) cap.release() video_arr = np.array(frames) return video_arr, fps def get_points_on_a_grid( size: int, extent: Tuple[float, ...], center: Optional[Tuple[float, ...]] = None, device: Optional[torch.device] = torch.device("cpu"), ): r"""Get a grid of points covering a rectangular region `get_points_on_a_grid(size, extent)` generates a :attr:`size` by :attr:`size` grid fo points distributed to cover a rectangular area specified by `extent`. The `extent` is a pair of integer :math:`(H,W)` specifying the height and width of the rectangle. Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)` specifying the vertical and horizontal center coordinates. The center defaults to the middle of the extent. Points are distributed uniformly within the rectangle leaving a margin :math:`m=W/64` from the border. It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of points :math:`P_{ij}=(x_i, y_i)` where .. math:: P_{ij} = \left( c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~ c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i \right) Points are returned in row-major order. Args: size (int): grid size. extent (tuple): height and with of the grid extent. center (tuple, optional): grid center. device (str, optional): Defaults to `"cpu"`. Returns: Tensor: grid. """ if size == 1: return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None] if center is None: center = [extent[0] / 2, extent[1] / 2] margin = extent[1] / 64 range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin) range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin) grid_y, grid_x = torch.meshgrid( torch.linspace(*range_y, size, device=device), torch.linspace(*range_x, size, device=device), indexing="ij", ) return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2) def paint_point_track( frames: np.ndarray, point_tracks: np.ndarray, visibles: np.ndarray, colormap: Optional[List[Tuple[int, int, int]]] = None, ) -> np.ndarray: """Converts a sequence of points to color code video. Args: frames: [num_frames, height, width, 3], np.uint8, [0, 255] point_tracks: [num_points, num_frames, 2], np.float32, [0, width / height] visibles: [num_points, num_frames], bool colormap: colormap for points, each point has a different RGB color. Returns: video: [num_frames, height, width, 3], np.uint8, [0, 255] """ num_points, num_frames = point_tracks.shape[0:2] if colormap is None: colormap = get_colors(num_colors=num_points) height, width = frames.shape[1:3] dot_size_as_fraction_of_min_edge = 0.015 radius = int(round(min(height, width) * dot_size_as_fraction_of_min_edge)) diam = radius * 2 + 1 quadratic_y = np.square(np.arange(diam)[:, np.newaxis] - radius - 1) quadratic_x = np.square(np.arange(diam)[np.newaxis, :] - radius - 1) icon = (quadratic_y + quadratic_x) - (radius**2) / 2.0 sharpness = 0.15 icon = np.clip(icon / (radius * 2 * sharpness), 0, 1) icon = 1 - icon[:, :, np.newaxis] icon1 = np.pad(icon, [(0, 1), (0, 1), (0, 0)]) icon2 = np.pad(icon, [(1, 0), (0, 1), (0, 0)]) icon3 = np.pad(icon, [(0, 1), (1, 0), (0, 0)]) icon4 = np.pad(icon, [(1, 0), (1, 0), (0, 0)]) video = frames.copy() for t in range(num_frames): # Pad so that points that extend outside the image frame don't crash us image = np.pad( video[t], [ (radius + 1, radius + 1), (radius + 1, radius + 1), (0, 0), ], ) for i in range(num_points): # The icon is centered at the center of a pixel, but the input coordinates # are raster coordinates. Therefore, to render a point at (1,1) (which # lies on the corner between four pixels), we need 1/4 of the icon placed # centered on the 0'th row, 0'th column, etc. We need to subtract # 0.5 to make the fractional position come out right. x, y = point_tracks[i, t, :] + 0.5 x = min(max(x, 0.0), width) y = min(max(y, 0.0), height) if visibles[i, t]: x1, y1 = np.floor(x).astype(np.int32), np.floor(y).astype(np.int32) x2, y2 = x1 + 1, y1 + 1 # bilinear interpolation patch = ( icon1 * (x2 - x) * (y2 - y) + icon2 * (x2 - x) * (y - y1) + icon3 * (x - x1) * (y2 - y) + icon4 * (x - x1) * (y - y1) ) x_ub = x1 + 2 * radius + 2 y_ub = y1 + 2 * radius + 2 image[y1:y_ub, x1:x_ub, :] = (1 - patch) * image[ y1:y_ub, x1:x_ub, : ] + patch * np.array(colormap[i])[np.newaxis, np.newaxis, :] # Remove the pad video[t] = image[radius + 1 : -radius - 1, radius + 1 : -radius - 1].astype( np.uint8 ) return video PREVIEW_WIDTH = 768 # Width of the preview video VIDEO_INPUT_RESO = (384, 512) # Resolution of the input video POINT_SIZE = 4 # Size of the query point in the preview video FRAME_LIMIT = 600 # Limit the number of frames to process def get_point( frame_num, video_queried_preview, query_points, query_points_color, query_count, evt: gr.SelectData, ): print(f"You selected {(evt.index[0], evt.index[1], frame_num)}") current_frame = video_queried_preview[int(frame_num)] # Get the mouse click query_points[int(frame_num)].append((evt.index[0], evt.index[1], frame_num)) # Choose the color for the point from matplotlib colormap color = matplotlib.colormaps.get_cmap("gist_rainbow")(query_count % 20 / 20) color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)) # print(f"Color: {color}") query_points_color[int(frame_num)].append(color) # Draw the point on the frame x, y = evt.index current_frame_draw = cv2.circle(current_frame, (x, y), POINT_SIZE, color, -1) # Update the frame video_queried_preview[int(frame_num)] = current_frame_draw # Update the query count query_count += 1 return ( current_frame_draw, # Updated frame for preview video_queried_preview, # Updated preview video query_points, # Updated query points query_points_color, # Updated query points color query_count, # Updated query count ) def undo_point( frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count, ): if len(query_points[int(frame_num)]) == 0: return ( video_queried_preview[int(frame_num)], video_queried_preview, query_points, query_points_color, query_count, ) # Get the last point query_points[int(frame_num)].pop(-1) query_points_color[int(frame_num)].pop(-1) # Redraw the frame current_frame_draw = video_preview[int(frame_num)].copy() for point, color in zip( query_points[int(frame_num)], query_points_color[int(frame_num)] ): x, y, _ = point current_frame_draw = cv2.circle( current_frame_draw, (x, y), POINT_SIZE, color, -1 ) # Update the query count query_count -= 1 # Update the frame video_queried_preview[int(frame_num)] = current_frame_draw return ( current_frame_draw, # Updated frame for preview video_queried_preview, # Updated preview video query_points, # Updated query points query_points_color, # Updated query points color query_count, # Updated query count ) def clear_frame_fn( frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count, ): query_count -= len(query_points[int(frame_num)]) query_points[int(frame_num)] = [] query_points_color[int(frame_num)] = [] video_queried_preview[int(frame_num)] = video_preview[int(frame_num)].copy() return ( video_preview[int(frame_num)], # Set the preview frame to the original frame video_queried_preview, query_points, # Cleared query points query_points_color, # Cleared query points color query_count, # New query count ) def clear_all_fn(frame_num, video_preview): return ( video_preview[int(frame_num)], video_preview.copy(), [[] for _ in range(len(video_preview))], [[] for _ in range(len(video_preview))], 0, ) def choose_frame(frame_num, video_preview_array): return video_preview_array[int(frame_num)] def preprocess_video_input(video_path): import time start_time = time.time() # Read video and get FPS video_arr, video_fps = read_video_cv2(video_path) end_time = time.time() print(f"Time taken to read video: {end_time - start_time} seconds") # Apply frame limit num_frames = video_arr.shape[0] if num_frames > FRAME_LIMIT: gr.Warning( f"The video is too long. Only the first {FRAME_LIMIT} frames will be used.", duration=5, ) video_arr = video_arr[:FRAME_LIMIT] num_frames = FRAME_LIMIT start_time = time.time() # Resize preview video while maintaining aspect ratio h, w = video_arr.shape[1:3] aspect_ratio = w / h if w > PREVIEW_WIDTH: new_w = PREVIEW_WIDTH new_h = int(new_w / aspect_ratio) preview_video = np.zeros((len(video_arr), new_h, new_w, 3), dtype=np.uint8) for i in range(len(video_arr)): preview_video[i] = cv2.resize(video_arr[i], (new_w, new_h), interpolation=cv2.INTER_LINEAR) else: preview_video = video_arr.copy() # Resize input video for the model input_video = np.zeros((len(video_arr), VIDEO_INPUT_RESO[0], VIDEO_INPUT_RESO[1], 3), dtype=np.uint8) for i in range(len(video_arr)): input_video[i] = cv2.resize(video_arr[i], (VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]), interpolation=cv2.INTER_LINEAR) end_time = time.time() print(f"Time taken to resize videos: {end_time - start_time} seconds") interactive = True return ( video_arr, # Original video preview_video, # Preview video at resized resolution preview_video.copy(), # Copy for visualization input_video, # Resized input video for model video_fps, gr.update(open=False), preview_video[0], gr.update(minimum=0, maximum=num_frames - 1, value=0, interactive=interactive), [[] for _ in range(num_frames)], [[] for _ in range(num_frames)], [[] for _ in range(num_frames)], 0, gr.update(interactive=interactive), gr.update(interactive=interactive), gr.update(interactive=interactive), gr.update(interactive=True), ) @spaces.GPU def track( video_preview, video_input, video_fps, query_points, query_points_color, query_count, ): tracking_mode = "selected" if query_count == 0: tracking_mode = "grid" device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float if device == "cuda" else torch.float # Convert query points to tensor, normalize to input resolution if tracking_mode != "grid": query_points_tensor = [] for frame_points in query_points: query_points_tensor.extend(frame_points) query_points_tensor = torch.tensor(query_points_tensor).float() query_points_tensor *= torch.tensor( [VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0], 1] ) / torch.tensor([[video_preview.shape[2], video_preview.shape[1], 1]]) query_points_tensor = ( query_points_tensor[None].flip(-1).to(device, dtype) ) # xyt -> tyx query_points_tensor = query_points_tensor[:, :, [0, 2, 1]] # tyx -> txy video_input = torch.tensor(video_input).unsqueeze(0) # model = torch.hub.load("facebookresearch/co-tracker", "cotracker3_online") model = CoTrackerOnlinePredictor(checkpoint='./baseline_online.pth') model = model.to(device) video_input = video_input.permute(0, 1, 4, 2, 3) if tracking_mode == "grid": xy = get_points_on_a_grid(40, video_input.shape[3:], device=device) queries = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) # add_support_grid = False cmap = matplotlib.colormaps.get_cmap("gist_rainbow") query_points_color = [[]] query_count = queries.shape[1] for i in range(query_count): # Choose the color for the point from matplotlib colormap color = cmap(i / float(query_count)) color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)) query_points_color[0].append(color) else: queries = query_points_tensor # xy = get_points_on_a_grid(15, video_input.shape[3:], device=device) # queries__ = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) # num_tracks = queries.shape[1] # queries = torch.cat([queries,queries__],dim=1) add_support_grid = True model( video_chunk=video_input[:, :1].to(device, dtype), is_first_step=True, grid_size=0, queries=queries, add_support_grid=add_support_grid, iters=4 ) # for ind in range(0, video_input.shape[1] - model.step, model.step): pred_tracks, pred_visibility = model( video_chunk=video_input[:, ind : ind + model.step * 2].to(device, dtype), grid_size=0, queries=queries, add_support_grid=add_support_grid, iters=4 ) # B T N 2, B T N 1 tracks = ( ( pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device) )[0] .permute(1, 0, 2) .cpu() .numpy() ) pred_occ = torch.ones_like(pred_visibility[0]).permute(1, 0).cpu().numpy() # make color array colors = [] for frame_colors in query_points_color: colors.extend(frame_colors) colors = np.array(colors) # pred_tracks = torch.cat([pred_tracks[:,:1],(pred_tracks[:,:-2] + pred_tracks[:,1:-1] + pred_tracks[:,2:])/ 3, pred_tracks[:,-1:]],dim=1) # torch.cat([pred_tracks[:,:1],pred_tracks[:,1:]],dim=1) pred_tracks = ( pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device) ) vis = Visualizer( save_dir="./saved_videos", pad_value=0, linewidth=2, tracks_leave_trace=0 ) # segm_mask = torch.zeros(queries.shape[1]) # segm_mask[:num_tracks] = 1 # print('segm_mask',segm_mask.shape, segm_mask) # segm_mask=segm_mask, painted_video = ( vis.visualize( torch.tensor(video_preview) .permute(0, 3, 1, 2)[None] .to(pred_tracks.device), pred_tracks.round(), pred_visibility, save_video=False, )[0] .permute(0, 2, 3, 1) .cpu() .numpy() ) # painted_video = paint_point_track(video_preview,tracks,pred_occ,colors) # save video video_file_name = uuid.uuid4().hex + ".mp4" video_path = os.path.join(os.path.dirname(__file__), "tmp") video_file_path = os.path.join(video_path, video_file_name) os.makedirs(video_path, exist_ok=True) mediapy.write_video(video_file_path, painted_video, fps=video_fps) return video_file_path with gr.Blocks() as demo: video = gr.State() video_queried_preview = gr.State() video_preview = gr.State() video_input = gr.State() video_fps = gr.State(24) query_points = gr.State([]) query_points_color = gr.State([]) is_tracked_query = gr.State([]) query_count = gr.State(0) gr.Markdown( "# 🎨 CoTracker3: Simpler and Better Point Tracking by Pseudo-Labelling Real Videos" ) gr.Markdown( "
\

Welcome to CoTracker! This space demonstrates point (pixel) tracking in videos. \ The model tracks points on a grid or points selected by you.

\

To get started, simply upload your .mp4 video or click on one of the example videos to load them. The shorter the video, the faster the processing. We recommend submitting short videos of length 2-7 seconds.

\

After you uploaded a video, please click \"Submit\" and then click \"Track\" for grid tracking or specify points you want to track before clicking. Enjoy the results!

\

For more details, check out our GitHub Repo ⭐. We thank the authors of LocoTrack for their interactive demo.

\
" ) gr.Markdown( "## First step: upload your video or select an example video, and click submit." ) with gr.Row(): with gr.Accordion("Your video input", open=True) as video_in_drawer: video_in = gr.Video(label="Video Input", format="mp4") submit = gr.Button("Submit", scale=0) import os apple = os.path.join(os.path.dirname(__file__), "videos", "apple.mp4") bear = os.path.join(os.path.dirname(__file__), "videos", "bear.mp4") paragliding_launch = os.path.join( os.path.dirname(__file__), "videos", "paragliding-launch.mp4" ) paragliding = os.path.join( os.path.dirname(__file__), "videos", "paragliding.mp4" ) cat = os.path.join(os.path.dirname(__file__), "videos", "cat.mp4") pillow = os.path.join(os.path.dirname(__file__), "videos", "pillow.mp4") teddy = os.path.join(os.path.dirname(__file__), "videos", "teddy.mp4") backpack = os.path.join(os.path.dirname(__file__), "videos", "backpack.mp4") gr.Examples( examples=[ bear, apple, paragliding, paragliding_launch, cat, pillow, teddy, backpack, ], inputs=[video_in], ) gr.Markdown( '## Second step: Simply click "Track" to track a grid of points or select query points on the video before clicking' ) with gr.Row(): with gr.Column(): with gr.Row(): query_frames = gr.Slider( minimum=0, maximum=100, value=0, step=1, label="Choose Frame", interactive=False, ) with gr.Row(): undo = gr.Button("Undo", interactive=False) clear_frame = gr.Button("Clear Frame", interactive=False) clear_all = gr.Button("Clear All", interactive=False) with gr.Row(): current_frame = gr.Image( label="Click to add query points", type="numpy", interactive=False ) with gr.Row(): track_button = gr.Button("Track", interactive=False) with gr.Column(): output_video = gr.Video( label="Output Video", interactive=False, autoplay=True, loop=True, ) submit.click( fn=preprocess_video_input, inputs=[video_in], outputs=[ video, video_preview, video_queried_preview, video_input, video_fps, video_in_drawer, current_frame, query_frames, query_points, query_points_color, is_tracked_query, query_count, undo, clear_frame, clear_all, track_button, ], queue=False, ) query_frames.change( fn=choose_frame, inputs=[query_frames, video_queried_preview], outputs=[ current_frame, ], queue=False, ) current_frame.select( fn=get_point, inputs=[ query_frames, video_queried_preview, query_points, query_points_color, query_count, ], outputs=[ current_frame, video_queried_preview, query_points, query_points_color, query_count, ], queue=False, ) undo.click( fn=undo_point, inputs=[ query_frames, video_preview, video_queried_preview, query_points, query_points_color, query_count, ], outputs=[ current_frame, video_queried_preview, query_points, query_points_color, query_count, ], queue=False, ) clear_frame.click( fn=clear_frame_fn, inputs=[ query_frames, video_preview, video_queried_preview, query_points, query_points_color, query_count, ], outputs=[ current_frame, video_queried_preview, query_points, query_points_color, query_count, ], queue=False, ) clear_all.click( fn=clear_all_fn, inputs=[ query_frames, video_preview, ], outputs=[ current_frame, video_queried_preview, query_points, query_points_color, query_count, ], queue=False, ) track_button.click( fn=track, inputs=[ video_preview, video_input, video_fps, query_points, query_points_color, query_count, ], outputs=[ output_video, ], queue=True, ) demo.launch(show_api=False, show_error=True, debug=False, share=False)