Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,34 +5,16 @@ import torch
|
|
5 |
import gradio as gr
|
6 |
from threading import Thread
|
7 |
from PIL import Image
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
from transformers import AutoConfig, PreTrainedModel, AutoTokenizer
|
15 |
-
|
16 |
-
# Model and tokenizer initialization
|
17 |
-
model_name = "Qwen/QVQ-72B-Preview"
|
18 |
-
|
19 |
-
config = AutoConfig.from_pretrained(
|
20 |
-
model_name,
|
21 |
-
trust_remote_code=True
|
22 |
-
)
|
23 |
-
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
-
model_name,
|
26 |
-
trust_remote_code=True
|
27 |
-
)
|
28 |
-
|
29 |
-
model = PreTrainedModel.from_pretrained(
|
30 |
-
model_name,
|
31 |
-
config=config,
|
32 |
-
trust_remote_code=True,
|
33 |
-
device_map="auto",
|
34 |
-
torch_dtype=torch.float16
|
35 |
)
|
|
|
36 |
|
37 |
# Footer
|
38 |
footer = """
|
@@ -45,35 +27,58 @@ footer = """
|
|
45 |
@spaces.GPU()
|
46 |
def process_image(image, text_input=None):
|
47 |
try:
|
48 |
-
# Convert image to PIL format
|
49 |
-
|
50 |
-
|
51 |
-
# Prepare inputs
|
52 |
-
if text_input:
|
53 |
-
messages = [
|
54 |
-
{
|
55 |
-
"role": "user",
|
56 |
-
"content": [
|
57 |
-
{"image": image},
|
58 |
-
{"text": text_input}
|
59 |
-
]
|
60 |
-
}
|
61 |
-
]
|
62 |
-
else:
|
63 |
-
messages = [
|
64 |
-
{
|
65 |
-
"role": "user",
|
66 |
-
"content": [
|
67 |
-
{"image": image},
|
68 |
-
{"text": "Please describe this image in detail."}
|
69 |
-
]
|
70 |
-
}
|
71 |
-
]
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
# Generate response
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
return
|
77 |
except Exception as e:
|
78 |
return f"Error processing image: {str(e)}"
|
79 |
|
|
|
5 |
import gradio as gr
|
6 |
from threading import Thread
|
7 |
from PIL import Image
|
8 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
9 |
+
from qwen_vl_utils import process_vision_info
|
10 |
|
11 |
+
# Model and processor initialization
|
12 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
13 |
+
"Qwen/QVQ-72B-Preview",
|
14 |
+
torch_dtype="auto",
|
15 |
+
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
+
processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
|
18 |
|
19 |
# Footer
|
20 |
footer = """
|
|
|
27 |
@spaces.GPU()
|
28 |
def process_image(image, text_input=None):
|
29 |
try:
|
30 |
+
# Convert image to PIL format if needed
|
31 |
+
if not isinstance(image, Image.Image):
|
32 |
+
image = Image.fromarray(image).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Prepare messages
|
35 |
+
if not text_input:
|
36 |
+
text_input = "Please describe this image in detail."
|
37 |
+
|
38 |
+
messages = [
|
39 |
+
{
|
40 |
+
"role": "system",
|
41 |
+
"content": [
|
42 |
+
{"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
|
43 |
+
],
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"role": "user",
|
47 |
+
"content": [
|
48 |
+
{"type": "image", "image": image},
|
49 |
+
{"type": "text", "text": text_input}
|
50 |
+
],
|
51 |
+
}
|
52 |
+
]
|
53 |
+
|
54 |
+
# Process inputs
|
55 |
+
text = processor.apply_chat_template(
|
56 |
+
messages,
|
57 |
+
tokenize=False,
|
58 |
+
add_generation_prompt=True
|
59 |
+
)
|
60 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
61 |
+
inputs = processor(
|
62 |
+
text=[text],
|
63 |
+
images=image_inputs,
|
64 |
+
videos=video_inputs,
|
65 |
+
padding=True,
|
66 |
+
return_tensors="pt",
|
67 |
+
)
|
68 |
+
inputs = inputs.to("cuda")
|
69 |
+
|
70 |
# Generate response
|
71 |
+
generated_ids = model.generate(**inputs, max_new_tokens=8192)
|
72 |
+
generated_ids_trimmed = [
|
73 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
74 |
+
]
|
75 |
+
output_text = processor.batch_decode(
|
76 |
+
generated_ids_trimmed,
|
77 |
+
skip_special_tokens=True,
|
78 |
+
clean_up_tokenization_spaces=False
|
79 |
+
)[0]
|
80 |
|
81 |
+
return output_text
|
82 |
except Exception as e:
|
83 |
return f"Error processing image: {str(e)}"
|
84 |
|