Spaces:
Running
Running
File size: 3,415 Bytes
d7c4521 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import random
import gradio as gr
from datasets import load_dataset
whoops = load_dataset("nlphuji/whoops")['test']
whoops = whoops.shuffle()
print(f"Loaded WMTIS, first example:")
print(whoops[0])
dataset_size = len(whoops)
print(f"dataset_size: {dataset_size}")
IMAGE = 'image'
IMAGE_DESIGNER = 'image_designer'
DESIGNER_EXPLANATION = 'designer_explanation'
CROWD_CAPTIONS = 'crowd_captions'
CROWD_EXPLANATIONS = 'crowd_explanations'
CROWD_UNDERSPECIFIED_CAPTIONS = 'crowd_underspecified_captions'
SELECTED_CAPTION = 'selected_caption'
COMMONSENSE_CATEGORY = 'commonsense_category'
QA = 'question_answering_pairs'
IMAGE_ID = 'image_id'
left_side_columns = [IMAGE]
right_side_columns = [x for x in whoops.features.keys() if x not in left_side_columns and x not in [QA]]
enumerate_cols = [CROWD_CAPTIONS, CROWD_EXPLANATIONS, CROWD_UNDERSPECIFIED_CAPTIONS]
emoji_to_label = {IMAGE_DESIGNER: 'π¨, π§βπ¨, π»', DESIGNER_EXPLANATION: 'π‘, π€, π§βπ¨',
CROWD_CAPTIONS: 'π₯, π¬, π', CROWD_EXPLANATIONS: 'π₯, π‘, π€', CROWD_UNDERSPECIFIED_CAPTIONS: 'π₯, π¬, π',
QA: 'β, π€, π‘', IMAGE_ID: 'π, π, πΎ', COMMONSENSE_CATEGORY: 'π€, π, π‘', SELECTED_CAPTION: 'π, π, π¬'}
target_size = (1024, 1024)
columns_number = 3
rows_number = 10
def func(index):
example = whoops[index]
values = get_instance_values(example)
return values
def get_instance_values(example):
values = []
for k in left_side_columns + right_side_columns:
if k in enumerate_cols:
value = list_to_string(example[k])
elif k == QA:
qa_list = [f"Q: {x[0]} A: {x[1]}" for x in example[k]]
value = list_to_string(qa_list)
else:
value = example[k]
values.append(value)
return values
def list_to_string(lst):
return '\n'.join(['{}. {}'.format(i + 1, item) for i, item in enumerate(lst)])
def create_image_accordion_block(index):
example = whoops[index]
instance_values = get_instance_values(example)
assert len(left_side_columns) == len(
instance_values[:len(left_side_columns)]) # excluding the image & designer
for key, value in zip(left_side_columns, instance_values[:len(left_side_columns)]):
if key == IMAGE:
img = whoops[index]["image"]
img_resized = img.resize(target_size)
gr.Image(value=img_resized, label=whoops[index]['commonsense_category'])
else:
label = key.capitalize().replace("_", " ")
gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}")
with gr.Accordion("Click for details", open=False):
assert len(right_side_columns) == len(
instance_values[len(left_side_columns):]) # excluding the image & designer
for key, value in zip(right_side_columns, instance_values[len(left_side_columns):]):
label = key.capitalize().replace("_", " ")
gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}")
with gr.Blocks() as demo:
gr.Markdown(f"# Slide to iterate WHOOPS!")
for row_num in range(0, rows_number):
with gr.Row():
for col_num in range(0, columns_number):
with gr.Column():
index = random.choice(range(0, dataset_size))
create_image_accordion_block(index)
demo.launch()
|