#!/usr/bin/env python """Demo app for https://github.com/adobe-research/custom-diffusion. The code in this repo is partly adapted from the following repository: https://huggingface.co/spaces/hysts/LoRA-SD-training """ from __future__ import annotations import os import pathlib import gradio as gr import torch from inference import InferencePipeline from trainer import Trainer from uploader import upload TITLE = '# Custom Diffusion + StableDiffusion Training UI' DESCRIPTION = 'This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion).' ORIGINAL_SPACE_ID = 'nupurkmr9/custom-diffusion' SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID) SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
Duplicate Space
''' if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID: SETTINGS = f'Settings' else: SETTINGS = 'Settings' CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces. "T4 small" is sufficient to run this demo.
''' os.system("git clone https://github.com/adobe-research/custom-diffusion") sys.path.append("custom-diffusion") def show_warning(warning_text: str) -> gr.Blocks: with gr.Blocks() as demo: with gr.Box(): gr.Markdown(warning_text) return demo def update_output_files() -> dict: paths = sorted(pathlib.Path('results').glob('*.pt')) paths = [path.as_posix() for path in paths] # type: ignore return gr.update(value=paths or None) def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks: with gr.Blocks() as demo: base_model = gr.Dropdown( choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'], value='CompVis/stable-diffusion-v1-4', label='Base Model', visible=True) resolution = gr.Dropdown(choices=['512', '768'], value='512', label='Resolution', visible=True) with gr.Row(): with gr.Box(): gr.Markdown('Training Data') concept_images = gr.Files(label='Images for your concept') concept_prompt = gr.Textbox(label='Concept Prompt', max_lines=1, placeholder='Example: "photo of a \ cat"') class_prompt = gr.Textbox(label='Regularization set Prompt', max_lines=1, placeholder='Example: "cat"') gr.Markdown(''' - We use "\" appended in front of the concept. E.g. "\ cat". - For a new concept, use "photo of a \ cat" for concept_prompt and "cat" for class_prompt. - For a style concept, use "painting in the style of \ art" for concept_prompt and "art" for class_prompt. ''') with gr.Box(): gr.Markdown('Training Parameters') num_training_steps = gr.Number( label='Number of Training Steps', value=1000, precision=0) learning_rate = gr.Number(label='Learning Rate', value=0.00001) train_text_encoder = gr.Checkbox(label='Train Text Encoder', value=False) modifier_token = gr.Checkbox(label='modifier token', value=True) batch_size = gr.Number( label='batch_size', value=1, precision=0) gradient_accumulation = gr.Number( label='Number of Gradient Accumulation', value=1, precision=0) use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True) gr.Markdown(''' - Only enable one of "Train Text Encoder" or "modifier token". - It will take about ~10 minutes to train for 1000 steps with a 3090 GPU. - You may want to try a small number of steps first, like 1, to see if everything works fine in your environment. - Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab. ''') run_button = gr.Button('Start Training') with gr.Box(): with gr.Row(): check_status_button = gr.Button('Check Training Status') with gr.Column(): with gr.Box(): gr.Markdown('Message') training_status = gr.Markdown() output_files = gr.Files(label='Trained Weight Files') run_button.click(fn=pipe.clear, inputs=None, outputs=None,) run_button.click(fn=trainer.run, inputs=[ base_model, resolution, concept_images, concept_prompt, class_prompt, num_training_steps, learning_rate, train_text_encoder, modifier_token, gradient_accumulation, batch_size, use_8bit_adam, ], outputs=[ training_status, output_files, ], queue=False) check_status_button.click(fn=trainer.check_if_running, inputs=None, outputs=training_status, queue=False) check_status_button.click(fn=update_output_files, inputs=None, outputs=output_files, queue=False) return demo def find_weight_files() -> list[str]: curr_dir = pathlib.Path(__file__).parent paths = sorted(curr_dir.rglob('*.bin')) return [path.relative_to(curr_dir).as_posix() for path in paths] def reload_custom_diffusion_weight_list() -> dict: return gr.update(choices=find_weight_files()) def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks: with gr.Blocks() as demo: with gr.Row(): with gr.Column(): base_model = gr.Dropdown( choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'], value='CompVis/stable-diffusion-v1-4', label='Base Model', visible=True) reload_button = gr.Button('Reload Weight List') weight_name = gr.Dropdown(choices=find_weight_files(), value='custom-diffusion-models/cat.bin', label='Custom Diffusion Weight File') prompt = gr.Textbox( label='Prompt', max_lines=1, placeholder='Example: "\ cat in outer space"') seed = gr.Slider(label='Seed', minimum=0, maximum=100000, step=1, value=42) with gr.Accordion('Other Parameters', open=False): num_steps = gr.Slider(label='Number of Steps', minimum=0, maximum=500, step=1, value=200) guidance_scale = gr.Slider(label='CFG Scale', minimum=0, maximum=50, step=0.1, value=6) eta = gr.Slider(label='DDIM eta', minimum=0, maximum=1., step=0.1, value=1.) batch_size = gr.Slider(label='Batch Size', minimum=0, maximum=10., step=1, value=2) run_button = gr.Button('Generate') gr.Markdown(''' - Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/" are your trained models. - After training, you can press "Reload Weight List" button to load your trained model names. ''') with gr.Column(): result = gr.Image(label='Result') reload_button.click(fn=reload_custom_diffusion_weight_list, inputs=None, outputs=weight_name) prompt.submit(fn=pipe.run, inputs=[ base_model, weight_name, prompt, seed, num_steps, guidance_scale, eta, batch_size, ], outputs=result, queue=False) run_button.click(fn=pipe.run, inputs=[ base_model, weight_name, prompt, seed, num_steps, guidance_scale, eta, batch_size, ], outputs=result, queue=False) return demo def create_upload_demo() -> gr.Blocks: with gr.Blocks() as demo: model_name = gr.Textbox(label='Model Name') hf_token = gr.Textbox( label='Hugging Face Token (with write permission)') upload_button = gr.Button('Upload') with gr.Box(): gr.Markdown('Message') result = gr.Markdown() gr.Markdown(''' - You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}). - You can find your Hugging Face token [here](https://huggingface.co/settings/tokens). ''') upload_button.click(fn=upload, inputs=[model_name, hf_token], outputs=result) return demo pipe = InferencePipeline() trainer = Trainer() with gr.Blocks(css='style.css') as demo: if os.getenv('IS_SHARED_UI'): show_warning(SHARED_UI_WARNING) if not torch.cuda.is_available(): show_warning(CUDA_NOT_AVAILABLE_WARNING) gr.Markdown(TITLE) gr.Markdown(DESCRIPTION) with gr.Tabs(): with gr.TabItem('Train'): create_training_demo(trainer, pipe) with gr.TabItem('Test'): create_inference_demo(pipe) with gr.TabItem('Upload'): create_upload_demo() demo.queue(default_enabled=False).launch(share=False)