Spaces:
Sleeping
Sleeping
Commit
·
75cad04
1
Parent(s):
a40ca17
update to results_v2
Browse files- requirements.txt +1 -0
- src/backend.py +166 -54
- src/evaluation.py +18 -39
requirements.txt
CHANGED
@@ -11,6 +11,7 @@ free-mujoco-py
|
|
11 |
mujoco<=2.3.7
|
12 |
numpy==1.24.2
|
13 |
pandas==2.0.0
|
|
|
14 |
python-dateutil==2.8.2
|
15 |
requests==2.28.2
|
16 |
rliable==1.0.8
|
|
|
11 |
mujoco<=2.3.7
|
12 |
numpy==1.24.2
|
13 |
pandas==2.0.0
|
14 |
+
pybullet_envs_gymnasium==0.4.0
|
15 |
python-dateutil==2.8.2
|
16 |
requests==2.28.2
|
17 |
rliable==1.0.8
|
src/backend.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
-
import
|
2 |
import os
|
3 |
import random
|
4 |
-
import
|
5 |
-
import tempfile
|
6 |
|
7 |
-
|
|
|
|
|
8 |
|
9 |
from src.evaluation import evaluate
|
10 |
from src.logging import setup_logger
|
@@ -12,71 +13,182 @@ from src.logging import setup_logger
|
|
12 |
logger = setup_logger(__name__)
|
13 |
|
14 |
API = HfApi(token=os.environ.get("TOKEN"))
|
15 |
-
RESULTS_REPO = "open-rl-leaderboard/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
def _backend_routine():
|
19 |
# List only the text classification models
|
20 |
-
rl_models =
|
21 |
logger.info(f"Found {len(rl_models)} RL models")
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
filenames = [sib.rfilename for sib in model.siblings]
|
25 |
if "agent.pt" in filenames:
|
26 |
-
|
27 |
|
28 |
-
logger.info(f"Found {len(
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
filenames = API.list_repo_files(RESULTS_REPO, repo_type="dataset")
|
33 |
-
filenames = [filename for filename in filenames if pattern.match(filename)]
|
34 |
-
|
35 |
-
evaluated_models = set()
|
36 |
-
for filename in filenames:
|
37 |
-
path = API.hf_hub_download(repo_id=RESULTS_REPO, filename=filename, repo_type="dataset")
|
38 |
-
with open(path) as fp:
|
39 |
-
report = json.load(fp)
|
40 |
-
evaluated_models.add((report["config"]["model_id"], report["config"]["model_sha"]))
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
logger.info(f"Found {len(pending_models)} pending models")
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
|
49 |
# Run an evaluation on the models
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
55 |
try:
|
56 |
-
|
|
|
|
|
|
|
57 |
except Exception as e:
|
58 |
-
logger.error(f"Error evaluating {
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
f.write(dumped)
|
74 |
-
|
75 |
-
commits.append(CommitOperationAdd(path_in_repo=path_in_repo, path_or_fileobj=local_path))
|
76 |
-
|
77 |
-
API.create_commit(
|
78 |
-
repo_id=RESULTS_REPO, commit_message="Add evaluation results", operations=commits, repo_type="dataset"
|
79 |
-
)
|
80 |
|
81 |
|
82 |
def backend_routine():
|
|
|
1 |
+
import fnmatch
|
2 |
import os
|
3 |
import random
|
4 |
+
import time
|
|
|
5 |
|
6 |
+
import pybullet_envs_gymnasium # noqa: F401 pylint: disable=unused-import
|
7 |
+
from datasets import load_dataset
|
8 |
+
from huggingface_hub import HfApi
|
9 |
|
10 |
from src.evaluation import evaluate
|
11 |
from src.logging import setup_logger
|
|
|
13 |
logger = setup_logger(__name__)
|
14 |
|
15 |
API = HfApi(token=os.environ.get("TOKEN"))
|
16 |
+
RESULTS_REPO = "open-rl-leaderboard/results_v2"
|
17 |
+
|
18 |
+
ALL_ENV_IDS = [
|
19 |
+
"AdventureNoFrameskip-v4",
|
20 |
+
"AirRaidNoFrameskip-v4",
|
21 |
+
"AlienNoFrameskip-v4",
|
22 |
+
"AmidarNoFrameskip-v4",
|
23 |
+
"AssaultNoFrameskip-v4",
|
24 |
+
"AsterixNoFrameskip-v4",
|
25 |
+
"AsteroidsNoFrameskip-v4",
|
26 |
+
"AtlantisNoFrameskip-v4",
|
27 |
+
"BankHeistNoFrameskip-v4",
|
28 |
+
"BattleZoneNoFrameskip-v4",
|
29 |
+
"BeamRiderNoFrameskip-v4",
|
30 |
+
"BerzerkNoFrameskip-v4",
|
31 |
+
"BowlingNoFrameskip-v4",
|
32 |
+
"BoxingNoFrameskip-v4",
|
33 |
+
"BreakoutNoFrameskip-v4",
|
34 |
+
"CarnivalNoFrameskip-v4",
|
35 |
+
"CentipedeNoFrameskip-v4",
|
36 |
+
"ChopperCommandNoFrameskip-v4",
|
37 |
+
"CrazyClimberNoFrameskip-v4",
|
38 |
+
"DefenderNoFrameskip-v4",
|
39 |
+
"DemonAttackNoFrameskip-v4",
|
40 |
+
"DoubleDunkNoFrameskip-v4",
|
41 |
+
"ElevatorActionNoFrameskip-v4",
|
42 |
+
"EnduroNoFrameskip-v4",
|
43 |
+
"FishingDerbyNoFrameskip-v4",
|
44 |
+
"FreewayNoFrameskip-v4",
|
45 |
+
"FrostbiteNoFrameskip-v4",
|
46 |
+
"GopherNoFrameskip-v4",
|
47 |
+
"GravitarNoFrameskip-v4",
|
48 |
+
"HeroNoFrameskip-v4",
|
49 |
+
"IceHockeyNoFrameskip-v4",
|
50 |
+
"JamesbondNoFrameskip-v4",
|
51 |
+
"JourneyEscapeNoFrameskip-v4",
|
52 |
+
"KangarooNoFrameskip-v4",
|
53 |
+
"KrullNoFrameskip-v4",
|
54 |
+
"KungFuMasterNoFrameskip-v4",
|
55 |
+
"MontezumaRevengeNoFrameskip-v4",
|
56 |
+
"MsPacmanNoFrameskip-v4",
|
57 |
+
"NameThisGameNoFrameskip-v4",
|
58 |
+
"PhoenixNoFrameskip-v4",
|
59 |
+
"PitfallNoFrameskip-v4",
|
60 |
+
"PongNoFrameskip-v4",
|
61 |
+
"PooyanNoFrameskip-v4",
|
62 |
+
"PrivateEyeNoFrameskip-v4",
|
63 |
+
"QbertNoFrameskip-v4",
|
64 |
+
"RiverraidNoFrameskip-v4",
|
65 |
+
"RoadRunnerNoFrameskip-v4",
|
66 |
+
"RobotankNoFrameskip-v4",
|
67 |
+
"SeaquestNoFrameskip-v4",
|
68 |
+
"SkiingNoFrameskip-v4",
|
69 |
+
"SolarisNoFrameskip-v4",
|
70 |
+
"SpaceInvadersNoFrameskip-v4",
|
71 |
+
"StarGunnerNoFrameskip-v4",
|
72 |
+
"TennisNoFrameskip-v4",
|
73 |
+
"TimePilotNoFrameskip-v4",
|
74 |
+
"TutankhamNoFrameskip-v4",
|
75 |
+
"UpNDownNoFrameskip-v4",
|
76 |
+
"VentureNoFrameskip-v4",
|
77 |
+
"VideoPinballNoFrameskip-v4",
|
78 |
+
"WizardOfWorNoFrameskip-v4",
|
79 |
+
"YarsRevengeNoFrameskip-v4",
|
80 |
+
"ZaxxonNoFrameskip-v4",
|
81 |
+
# Box2D
|
82 |
+
"BipedalWalker-v3",
|
83 |
+
"BipedalWalkerHardcore-v3",
|
84 |
+
"CarRacing-v2",
|
85 |
+
"LunarLander-v2",
|
86 |
+
"LunarLanderContinuous-v2",
|
87 |
+
# Toy text
|
88 |
+
"Blackjack-v1",
|
89 |
+
"CliffWalking-v0",
|
90 |
+
"FrozenLake-v1",
|
91 |
+
"FrozenLake8x8-v1",
|
92 |
+
# Classic control
|
93 |
+
"Acrobot-v1",
|
94 |
+
"CartPole-v1",
|
95 |
+
"MountainCar-v0",
|
96 |
+
"MountainCarContinuous-v0",
|
97 |
+
"Pendulum-v1",
|
98 |
+
# MuJoCo
|
99 |
+
"Ant-v4",
|
100 |
+
"HalfCheetah-v4",
|
101 |
+
"Hopper-v4",
|
102 |
+
"Humanoid-v4",
|
103 |
+
"HumanoidStandup-v4",
|
104 |
+
"InvertedDoublePendulum-v4",
|
105 |
+
"InvertedPendulum-v4",
|
106 |
+
"Pusher-v4",
|
107 |
+
"Reacher-v4",
|
108 |
+
"Swimmer-v4",
|
109 |
+
"Walker2d-v4",
|
110 |
+
# PyBullet
|
111 |
+
"AntBulletEnv-v0",
|
112 |
+
"HalfCheetahBulletEnv-v0",
|
113 |
+
"HopperBulletEnv-v0",
|
114 |
+
"HumanoidBulletEnv-v0",
|
115 |
+
"InvertedDoublePendulumBulletEnv-v0",
|
116 |
+
"InvertedPendulumSwingupBulletEnv-v0",
|
117 |
+
"MinitaurBulletEnv-v0",
|
118 |
+
"ReacherBulletEnv-v0",
|
119 |
+
"Walker2DBulletEnv-v0",
|
120 |
+
]
|
121 |
+
|
122 |
+
|
123 |
+
def pattern_match(patterns, source_list):
|
124 |
+
if isinstance(patterns, str):
|
125 |
+
patterns = [patterns]
|
126 |
+
|
127 |
+
env_ids = set()
|
128 |
+
for pattern in patterns:
|
129 |
+
for matching in fnmatch.filter(source_list, pattern):
|
130 |
+
env_ids.add(matching)
|
131 |
+
return sorted(list(env_ids))
|
132 |
|
133 |
|
134 |
def _backend_routine():
|
135 |
# List only the text classification models
|
136 |
+
rl_models = [(model.modelId, model.sha) for model in API.list_models(filter=["reinforcement-learning"])]
|
137 |
logger.info(f"Found {len(rl_models)} RL models")
|
138 |
+
dataset = load_dataset(
|
139 |
+
RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks"
|
140 |
+
)
|
141 |
+
evaluated_models = [("/".join([x["user_id"], x["model_id"]]), x["sha"]) for x in dataset]
|
142 |
+
pending_models = list(set(rl_models) - set(evaluated_models))
|
143 |
+
pending_and_compatible_models = []
|
144 |
+
for model in pending_models:
|
145 |
filenames = [sib.rfilename for sib in model.siblings]
|
146 |
if "agent.pt" in filenames:
|
147 |
+
pending_and_compatible_models.append((model.modelId, model.sha))
|
148 |
|
149 |
+
logger.info(f"Found {len(pending_and_compatible_models)} compatible pending models")
|
150 |
|
151 |
+
if len(pending_and_compatible_models) == 0:
|
152 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
# Shuffle the dataset
|
155 |
+
random.shuffle(pending_and_compatible_models)
|
|
|
156 |
|
157 |
+
# Select a random model
|
158 |
+
repo_id, sha = pending_and_compatible_models.pop()
|
159 |
+
user_id, model_id = repo_id.split("/")
|
160 |
+
row = {"model_id": model_id, "user_id": user_id, "sha": sha}
|
161 |
|
162 |
# Run an evaluation on the models
|
163 |
+
model_info = API.model_info(repo_id, revision=sha)
|
164 |
+
|
165 |
+
# Extract the environment IDs from the tags (usually only one)
|
166 |
+
env_ids = pattern_match(model_info.tags, ALL_ENV_IDS)
|
167 |
+
if len(env_ids) > 0:
|
168 |
+
env_id = env_ids[0]
|
169 |
+
logger.info(f"Running evaluation on {user_id}/{model_id}")
|
170 |
+
|
171 |
try:
|
172 |
+
episodic_returns = evaluate(repo_id, sha, env_id)
|
173 |
+
row["status"] = "DONE"
|
174 |
+
row["env_id"] = env_id
|
175 |
+
row["episodic_returns"] = episodic_returns
|
176 |
except Exception as e:
|
177 |
+
logger.error(f"Error evaluating {repo_id}: {e}")
|
178 |
+
logger.exception(e)
|
179 |
+
row["status"] = "FAILED"
|
180 |
+
|
181 |
+
else:
|
182 |
+
logger.error(f"No environment found for {model_id}")
|
183 |
+
row["status"] = "FAILED"
|
184 |
+
|
185 |
+
# load the last version of the dataset
|
186 |
+
dataset = load_dataset(
|
187 |
+
RESULTS_REPO, split="train", download_mode="force_redownload", verification_mode="no_checks"
|
188 |
+
)
|
189 |
+
dataset.add_item(row)
|
190 |
+
dataset.push_to_hub(RESULTS_REPO, split="train", token=API.token)
|
191 |
+
time.sleep(60) # Sleep for 1 minute to avoid rate limiting
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
|
194 |
def backend_routine():
|
src/evaluation.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import fnmatch
|
2 |
import os
|
3 |
from typing import Dict, SupportsFloat
|
4 |
|
@@ -303,35 +302,18 @@ def make(env_id):
|
|
303 |
return thunk
|
304 |
|
305 |
|
306 |
-
def
|
307 |
-
|
308 |
-
patterns = [patterns]
|
309 |
-
|
310 |
-
env_ids = set()
|
311 |
-
for pattern in patterns:
|
312 |
-
for matching in fnmatch.filter(source_list, pattern):
|
313 |
-
env_ids.add(matching)
|
314 |
-
return sorted(list(env_ids))
|
315 |
-
|
316 |
-
|
317 |
-
def evaluate(model_id, revision):
|
318 |
-
tags = API.model_info(model_id, revision=revision).tags
|
319 |
-
|
320 |
-
# Extract the environment IDs from the tags (usually only one)
|
321 |
-
env_ids = pattern_match(tags, ALL_ENV_IDS)
|
322 |
-
logger.info(f"Selected environments: {env_ids}")
|
323 |
-
|
324 |
-
results = {}
|
325 |
|
326 |
# Check if the agent exists
|
327 |
try:
|
328 |
-
agent_path = API.hf_hub_download(repo_id=
|
329 |
except EntryNotFoundError:
|
330 |
logger.error("Agent not found")
|
331 |
return None
|
332 |
|
333 |
# Check safety
|
334 |
-
security = next(iter(API.get_paths_info(
|
335 |
if security is None or "safe" not in security:
|
336 |
logger.warn("Agent safety not available")
|
337 |
# return None
|
@@ -341,25 +323,22 @@ def evaluate(model_id, revision):
|
|
341 |
|
342 |
# Load the agent
|
343 |
try:
|
344 |
-
agent = torch.jit.load(agent_path)
|
345 |
except Exception as e:
|
346 |
logger.error(f"Error loading agent: {e}")
|
347 |
return None
|
348 |
|
349 |
# Evaluate the agent on the environments
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
results[env_id] = {"episodic_returns": episodic_returns}
|
364 |
-
logger.info(f"Environment {env_id}: {np.mean(episodic_returns)} ± {np.std(episodic_returns)}")
|
365 |
-
return results
|
|
|
|
|
1 |
import os
|
2 |
from typing import Dict, SupportsFloat
|
3 |
|
|
|
302 |
return thunk
|
303 |
|
304 |
|
305 |
+
def evaluate(repo_id, revision, env_id):
|
306 |
+
tags = API.model_info(repo_id, revision=revision).tags
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
# Check if the agent exists
|
309 |
try:
|
310 |
+
agent_path = API.hf_hub_download(repo_id=repo_id, filename="agent.pt")
|
311 |
except EntryNotFoundError:
|
312 |
logger.error("Agent not found")
|
313 |
return None
|
314 |
|
315 |
# Check safety
|
316 |
+
security = next(iter(API.get_paths_info(repo_id, "agent.pt", expand=True))).security
|
317 |
if security is None or "safe" not in security:
|
318 |
logger.warn("Agent safety not available")
|
319 |
# return None
|
|
|
323 |
|
324 |
# Load the agent
|
325 |
try:
|
326 |
+
agent = torch.jit.load(agent_path)
|
327 |
except Exception as e:
|
328 |
logger.error(f"Error loading agent: {e}")
|
329 |
return None
|
330 |
|
331 |
# Evaluate the agent on the environments
|
332 |
+
envs = gym.vector.SyncVectorEnv([make(env_id) for _ in range(1)])
|
333 |
+
observations, _ = envs.reset()
|
334 |
+
episodic_returns = []
|
335 |
+
while len(episodic_returns) < NUM_EPISODES:
|
336 |
+
actions = agent(torch.tensor(observations)).numpy()
|
337 |
+
observations, _, _, _, infos = envs.step(actions)
|
338 |
+
if "final_info" in infos:
|
339 |
+
for info in infos["final_info"]:
|
340 |
+
if info is None or "episode" not in info:
|
341 |
+
continue
|
342 |
+
episodic_returns.append(float(info["episode"]["r"]))
|
343 |
+
|
344 |
+
return episodic_returns
|
|
|
|
|
|