File size: 17,260 Bytes
a3a16bd
 
 
 
 
cb99099
a3a16bd
 
 
 
 
 
 
 
 
 
 
ecbfda9
 
a3a16bd
 
 
 
 
ecbfda9
 
 
 
 
 
 
 
 
 
 
a3a16bd
 
ecbfda9
a3a16bd
 
 
 
 
ecbfda9
a3a16bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ddd050
a3a16bd
 
 
 
 
 
 
 
 
 
 
cb99099
a3a16bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbfda9
a3a16bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb99099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a16bd
cb99099
a3a16bd
 
 
cb99099
 
 
 
a3a16bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb99099
a3a16bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb99099
 
 
 
a3a16bd
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import base64
import json
from datetime import datetime
import gradio as gr
import torch
# import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files

# Define constants
DESCRIPTION = "[UGround Demo](https://osu-nlp-group.github.io/UGround/)"
_SYSTEM = "You are a very helpful assistant."
MIN_PIXELS = 802816
MAX_PIXELS = 1806336

# Specify the model repository and destination folder
# https://huggingface.co/osunlp/UGround-V1-2B
model_repo = "osunlp/UGround-V1-2B"
destination_folder = "./UGround-V1-2B"
# 
# # Ensure the destination folder exists
# os.makedirs(destination_folder, exist_ok=True)
# 
# # List all files in the repository
# files = list_repo_files(repo_id=model_repo)
# 
# # Download each file to the destination folder
# for file in files:
#     file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
#     print(f"Downloaded {file} to {file_path}")

model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_repo,
    torch_dtype=torch.bfloat16,
    device_map="cpu",
)

# Load the processor
processor = AutoProcessor.from_pretrained(model_repo, min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)

# Helper functions
def draw_point(image_input, point=None, radius=5):
    """Draw a point on the image."""
    if isinstance(image_input, str):
        image = Image.open(image_input)
    else:
        image = Image.fromarray(np.uint8(image_input))

    if point:
        x, y = round(point[0]/1000 * image.width), round(point[1]/1000 * image.height)
        ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
    return image

def array_to_image_path(image_array, session_id):
    """Save the uploaded image and return its path."""
    if image_array is None:
        raise ValueError("No image provided. Please upload an image before submitting.")
    img = Image.fromarray(np.uint8(image_array))
    filename = f"{session_id}.png"
    img.save(filename)
    return os.path.abspath(filename)

def crop_image(image_path, click_xy, crop_factor=0.5):
    """Crop the image around the click point."""
    image = Image.open(image_path)
    width, height = image.size
    crop_width, crop_height = int(width * crop_factor), int(height * crop_factor)

    center_x, center_y = int(click_xy[0]/1000 * width), int(click_xy[1]/1000 * height)
    left = max(center_x - crop_width // 2, 0)
    upper = max(center_y - crop_height // 2, 0)
    right = min(center_x + crop_width // 2, width)
    lower = min(center_y + crop_height // 2, height)

    cropped_image = image.crop((left, upper, right, lower))
    cropped_image_path = f"cropped_{os.path.basename(image_path)}"
    cropped_image.save(cropped_image_path)

    return cropped_image_path

# @spaces.GPU
def run_showui(image, query, session_id, iterations=1):
    """Main function for iterative inference."""
    image_path = array_to_image_path(image, session_id)
    
    click_xy = None
    images_during_iterations = []  # List to store images at each step

    for _ in range(iterations):
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "You are a very helpful assistant"},
                    {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
                    {"type": "text", "text": f"""Your task is to help the user identify the precise coordinates (x, y) of a specific area/element/object on the screen based on a description.

  - Your response should aim to point to the center or a representative point within the described area/element/object as accurately as possible.
  - If the description is unclear or ambiguous, infer the most relevant area or element based on its likely context or purpose.
  - Your answer should be a single string (x, y) corresponding to the point of the interest.

  Description: {query}

  Answer:"""}
                ],
            }
        ]

        global model
        model = model.to("cuda")

        text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt"
        )
        inputs = inputs.to("cuda")

        generated_ids = model.generate(**inputs, max_new_tokens=128,temperature=0)
        generated_ids_trimmed = [
            out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        output_text = processor.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )[0]

        click_xy = ast.literal_eval(output_text)


        # Draw point on the current image
        result_image = draw_point(image_path, click_xy, radius=10)
        images_during_iterations.append(result_image)  # Store the current image

        # Crop the image for the next iteration
        image_path = crop_image(image_path, click_xy)

    return images_during_iterations, str(click_xy)

def save_and_upload_data(image, query, session_id, is_example_image, votes=None):
    """Save the data to a JSON file and upload to S3."""
    if is_example_image == "True":
        return

    votes = votes or {"upvotes": 0, "downvotes": 0}

    # Save image locally
    image_file_name = f"{session_id}.png"
    image.save(image_file_name)

    data = {
        "image_path": image_file_name,
        "query": query,
        "votes": votes,
        "timestamp": datetime.now().isoformat()
    }
    
    local_file_name = f"{session_id}.json"
    
    with open(local_file_name, "w") as f:
        json.dump(data, f)

    return data

def update_vote(vote_type, session_id, is_example_image):
    """Update the vote count and re-upload the JSON file."""
    if is_example_image == "True":
        return "Example image."

    local_file_name = f"{session_id}.json"
    
    with open(local_file_name, "r") as f:
        data = json.load(f)
    
    if vote_type == "upvote":
        data["votes"]["upvotes"] += 1
    elif vote_type == "downvote":
        data["votes"]["downvotes"] += 1
    
    with open(local_file_name, "w") as f:
        json.dump(data, f)

    return f"Thank you for your {vote_type}!"

with open("./assets/showui.png", "rb") as image_file:
    base64_image = base64.b64encode(image_file.read()).decode("utf-8")


# [
#                     [f"{cur_dir}/amazon.jpg",f"Search bar at the top of the page"],
#                     [f"{cur_dir}/shopping.jpg", f"delete button for the second item in the cart list"],
#                     [f"{cur_dir}/ios.jpg", f"Open Maps"],
#                     [f"{cur_dir}/toggle.jpg", f"toggle button labeled by VPN"],
#                     [f"{cur_dir}/semantic.jpg", f"Home"],
#                     [f"{cur_dir}/accweather.jpg", f"Select May"],
#                     [f"{cur_dir}/arxiv.jpg", f"Home"],
#                     [f"{cur_dir}/arxiv.jpg", f"Edit the page"],
#                     [f"{cur_dir}/ios.jpg", f"icon at the top right corner"],
#                     [f"{cur_dir}/health.jpg", f"text labeled by 2023/11/26"],


examples = [
["./examples/amazon.jpg", "Search bar at the top of the page", True],
["./examples/shopping.jpg", "delete button for the second item in the cart list", True],
["./examples/ios.jpg", "Open Maps", True],
["./examples/toggle.jpg", "toggle button labeled by VPN", True],
["./examples/semantic.jpg", "Home", True],
["./examples/accweather.jpg", "Select May", True],
["./examples/arxiv.jpg", "Home", True],
["./examples/arxiv.jpg", "Edit the page", True],
["./examples/ios.jpg", "icon at the top right corner", True],
["./examples/health.jpg", "text labeled by 2023/11/26", True],
    ["./examples/app_store.png", "Download Kindle.", True],
    ["./examples/ios_setting.png", "Turn off Do not disturb.", True],
    # ["./examples/apple_music.png", "Star to favorite.", True],
    # ["./examples/map.png", "Boston.", True],
    # ["./examples/wallet.png", "Scan a QR code.", True],
    # ["./examples/word.png", "More shapes.", True],
    # ["./examples/web_shopping.png", "Proceed to checkout.", True],
    # ["./examples/web_forum.png", "Post my comment.", True],
    # ["./examples/safari_google.png", "Click on search bar.", True],
]



title_markdown = ("""
# UGround: Universal Visual Grounding for GUI Agents
[[🏠Project Homepage](https://osu-nlp-group.github.io/UGround/)] [[Code](https://github.com/OSU-NLP-Group/UGround)] [[😊Model](https://huggingface.co/collections/osunlp/uground-677824fc5823d21267bc9812)][[📚Paper](https://arxiv.org/abs/2410.05243)]
""")

tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")


learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI. Please contact us if you find any potential violation.
""")

block_css = """

#buttons button {
    min-width: min(120px,100%);
}

#chatbot img {
    max-width: 80%;    /* 宽图片根据宽度调整 */
    max-height: 80vh;  /* 高图片根据视口高度调整 */
    width: auto;        /* 保持宽度自适应 */
    height: auto;       /* 保持高度自适应 */
    object-fit: contain; /* 保持图片宽高比,不失真 */
}

"""


def build_demo(embed_mode, concurrency_count=1):
    with gr.Blocks(title="UGround Demo", theme=gr.themes.Default(), css=block_css) as demo:
        state_image_path = gr.State(value=None)
        state_session_id = gr.State(value=None)


        if not embed_mode:
            gr.Markdown(title_markdown)

        # if not embed_mode:
        #     gr.HTML(
        #         f"""
        #         <div style="text-align: center; margin-bottom: 20px;">
        #             <div style="display: flex; justify-content: center;">
        #                 <img src="https://raw.githubusercontent.com/showlab/ShowUI/refs/heads/main/assets/showui.jpg" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
        #             </div>
        #             <p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
        #             <div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
        #                 <a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank">
        #                     <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
        #                 </a>
        #                 <a href="https://arxiv.org/abs/2411.17465" target="_blank">
        #                     <img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
        #                 </a>
        #                 <a href="https://github.com/showlab/ShowUI" target="_blank">
        #                     <img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
        #                 </a>
        #             </div>
        #         </div>
        #         """
        #     )

        with gr.Row():
            with gr.Column(scale=3):
                imagebox = gr.Image(type="numpy", label="Input Screenshot", placeholder="""#Try UGround with screenshots!

                
                Windows:  [Win + Shift + S]
                macOS:  [Command + Shift + 3]
                
                Then upload/paste from clipboard 🤗
                """)
                
                # Add a slider for iteration count
                iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps")

                textbox = gr.Textbox(
                    show_label=True,
                    placeholder="Enter an element description (referring expression) or a single-step instruction and press ENTER",
                    label="Query",
                )
                submit_btn = gr.Button(value="Submit", variant="primary")

                # Examples component
                gr.Examples(
                    examples=[[e[0], e[1]] for e in examples],
                    inputs=[imagebox, textbox],
                    outputs=[textbox],  # Only update the query textbox
                    examples_per_page=3,
                )

                # Add a hidden dropdown to pass the `is_example` flag
                is_example_dropdown = gr.Dropdown(
                    choices=["True", "False"],
                    value="False",
                    visible=False,
                    label="Is Example Image",
                )

                def set_is_example(query):
                    # Find the example and return its `is_example` flag
                    for _, example_query, is_example in examples:
                        if query.strip() == example_query.strip():
                            return str(is_example)  # Return as string for Dropdown compatibility
                    return "False"

                textbox.change(
                    set_is_example,
                    inputs=[textbox],
                    outputs=[is_example_dropdown],
                )

            with gr.Column(scale=8):
                output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain", preview=True)
                # output_gallery = gr.Gallery(label="Iterative Refinement")
                gr.HTML(
                    """
                    <p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
                    """
                )
                output_coords = gr.Textbox(label="Final Clickable Coordinates")

                gr.HTML(
                    """
                    <p><strong>🤔 Good or bad? Rate your experience to help us improve! ⬇️</strong></p>
                    """
                )
                with gr.Row(elem_id="action-buttons", equal_height=True):
                    upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary")
                    downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary")
                    clear_btn = gr.Button(value="🗑️ Clear", interactive=True)

            def on_submit(image, query, iterations, is_example_image):
                if image is None:
                    raise ValueError("No image provided. Please upload an image before submitting.")
                
                session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
                
                images_during_iterations, click_coords = run_showui(image, query, session_id, iterations)
                
                save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image)
                
                return images_during_iterations, click_coords, session_id

            submit_btn.click(
                on_submit,
                [imagebox, textbox, iteration_slider, is_example_dropdown],
                [output_gallery, output_coords, state_session_id],
            )

            clear_btn.click(
                lambda: (None, None, None, None),
                inputs=None,
                outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id],
                queue=False
            )

            upvote_btn.click(
                lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image),
                inputs=[state_session_id, is_example_dropdown],
                outputs=[],
                queue=False
            )

            downvote_btn.click(
                lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image),
                inputs=[state_session_id, is_example_dropdown],
                outputs=[],
                queue=False
            )

        if not embed_mode:
            gr.Markdown(tos_markdown)
            gr.Markdown(learn_more_markdown)

    return demo

if __name__ == "__main__":
    demo = build_demo(embed_mode=False)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        ssr_mode=False,
        debug=True,
    )