import base64 import json from datetime import datetime import gradio as gr import torch # import spaces from PIL import Image, ImageDraw from qwen_vl_utils import process_vision_info from transformers import Qwen2VLForConditionalGeneration, AutoProcessor import ast import os import numpy as np from huggingface_hub import hf_hub_download, list_repo_files # Define constants DESCRIPTION = "[UGround Demo](https://osu-nlp-group.github.io/UGround/)" _SYSTEM = "You are a very helpful assistant." MIN_PIXELS = 802816 MAX_PIXELS = 1806336 # Specify the model repository and destination folder # https://huggingface.co/osunlp/UGround-V1-2B model_repo = "osunlp/UGround-V1-2B" destination_folder = "./UGround-V1-2B" # # # Ensure the destination folder exists # os.makedirs(destination_folder, exist_ok=True) # # # List all files in the repository # files = list_repo_files(repo_id=model_repo) # # # Download each file to the destination folder # for file in files: # file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) # print(f"Downloaded {file} to {file_path}") model = Qwen2VLForConditionalGeneration.from_pretrained( model_repo, torch_dtype=torch.bfloat16, device_map="cpu", ) # Load the processor processor = AutoProcessor.from_pretrained(model_repo, min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) # Helper functions def draw_point(image_input, point=None, radius=5): """Draw a point on the image.""" if isinstance(image_input, str): image = Image.open(image_input) else: image = Image.fromarray(np.uint8(image_input)) if point: x, y = round(point[0]/1000 * image.width), round(point[1]/1000 * image.height) ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') return image def array_to_image_path(image_array, session_id): """Save the uploaded image and return its path.""" if image_array is None: raise ValueError("No image provided. Please upload an image before submitting.") img = Image.fromarray(np.uint8(image_array)) filename = f"{session_id}.png" img.save(filename) return os.path.abspath(filename) def crop_image(image_path, click_xy, crop_factor=0.5): """Crop the image around the click point.""" image = Image.open(image_path) width, height = image.size crop_width, crop_height = int(width * crop_factor), int(height * crop_factor) center_x, center_y = int(click_xy[0]/1000 * width), int(click_xy[1]/1000 * height) left = max(center_x - crop_width // 2, 0) upper = max(center_y - crop_height // 2, 0) right = min(center_x + crop_width // 2, width) lower = min(center_y + crop_height // 2, height) cropped_image = image.crop((left, upper, right, lower)) cropped_image_path = f"cropped_{os.path.basename(image_path)}" cropped_image.save(cropped_image_path) return cropped_image_path # @spaces.GPU def run_showui(image, query, session_id, iterations=1): """Main function for iterative inference.""" image_path = array_to_image_path(image, session_id) click_xy = None images_during_iterations = [] # List to store images at each step for _ in range(iterations): messages = [ { "role": "user", "content": [ {"type": "text", "text": "You are a very helpful assistant"}, {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, {"type": "text", "text": f"""Your task is to help the user identify the precise coordinates (x, y) of a specific area/element/object on the screen based on a description. - Your response should aim to point to the center or a representative point within the described area/element/object as accurately as possible. - If the description is unclear or ambiguous, infer the most relevant area or element based on its likely context or purpose. - Your answer should be a single string (x, y) corresponding to the point of the interest. Description: {query} Answer:"""} ], } ] global model model = model.to("cuda") text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128,temperature=0) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] click_xy = ast.literal_eval(output_text) # Draw point on the current image result_image = draw_point(image_path, click_xy, radius=10) images_during_iterations.append(result_image) # Store the current image # Crop the image for the next iteration image_path = crop_image(image_path, click_xy) return images_during_iterations, str(click_xy) def save_and_upload_data(image, query, session_id, is_example_image, votes=None): """Save the data to a JSON file and upload to S3.""" if is_example_image == "True": return votes = votes or {"upvotes": 0, "downvotes": 0} # Save image locally image_file_name = f"{session_id}.png" image.save(image_file_name) data = { "image_path": image_file_name, "query": query, "votes": votes, "timestamp": datetime.now().isoformat() } local_file_name = f"{session_id}.json" with open(local_file_name, "w") as f: json.dump(data, f) return data def update_vote(vote_type, session_id, is_example_image): """Update the vote count and re-upload the JSON file.""" if is_example_image == "True": return "Example image." local_file_name = f"{session_id}.json" with open(local_file_name, "r") as f: data = json.load(f) if vote_type == "upvote": data["votes"]["upvotes"] += 1 elif vote_type == "downvote": data["votes"]["downvotes"] += 1 with open(local_file_name, "w") as f: json.dump(data, f) return f"Thank you for your {vote_type}!" with open("./assets/showui.png", "rb") as image_file: base64_image = base64.b64encode(image_file.read()).decode("utf-8") # [ # [f"{cur_dir}/amazon.jpg",f"Search bar at the top of the page"], # [f"{cur_dir}/shopping.jpg", f"delete button for the second item in the cart list"], # [f"{cur_dir}/ios.jpg", f"Open Maps"], # [f"{cur_dir}/toggle.jpg", f"toggle button labeled by VPN"], # [f"{cur_dir}/semantic.jpg", f"Home"], # [f"{cur_dir}/accweather.jpg", f"Select May"], # [f"{cur_dir}/arxiv.jpg", f"Home"], # [f"{cur_dir}/arxiv.jpg", f"Edit the page"], # [f"{cur_dir}/ios.jpg", f"icon at the top right corner"], # [f"{cur_dir}/health.jpg", f"text labeled by 2023/11/26"], examples = [ ["./examples/amazon.jpg", "Search bar at the top of the page", True], ["./examples/shopping.jpg", "delete button for the second item in the cart list", True], ["./examples/ios.jpg", "Open Maps", True], ["./examples/toggle.jpg", "toggle button labeled by VPN", True], ["./examples/semantic.jpg", "Home", True], ["./examples/accweather.jpg", "Select May", True], ["./examples/arxiv.jpg", "Home", True], ["./examples/arxiv.jpg", "Edit the page", True], ["./examples/ios.jpg", "icon at the top right corner", True], ["./examples/health.jpg", "text labeled by 2023/11/26", True], ["./examples/app_store.png", "Download Kindle.", True], ["./examples/ios_setting.png", "Turn off Do not disturb.", True], # ["./examples/apple_music.png", "Star to favorite.", True], # ["./examples/map.png", "Boston.", True], # ["./examples/wallet.png", "Scan a QR code.", True], # ["./examples/word.png", "More shapes.", True], # ["./examples/web_shopping.png", "Proceed to checkout.", True], # ["./examples/web_forum.png", "Post my comment.", True], # ["./examples/safari_google.png", "Click on search bar.", True], ] title_markdown = (""" # UGround: Universal Visual Grounding for GUI Agents [[🏠Project Homepage](https://osu-nlp-group.github.io/UGround/)] [[Code](https://github.com/OSU-NLP-Group/UGround)] [[😊Model](https://huggingface.co/collections/osunlp/uground-677824fc5823d21267bc9812)][[📚Paper](https://arxiv.org/abs/2410.05243)] """) tos_markdown = (""" ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. """) learn_more_markdown = (""" ### License The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI. Please contact us if you find any potential violation. """) block_css = """ #buttons button { min-width: min(120px,100%); } #chatbot img { max-width: 80%; /* 宽图片根据宽度调整 */ max-height: 80vh; /* 高图片根据视口高度调整 */ width: auto; /* 保持宽度自适应 */ height: auto; /* 保持高度自适应 */ object-fit: contain; /* 保持图片宽高比,不失真 */ } """ def build_demo(embed_mode, concurrency_count=1): with gr.Blocks(title="UGround Demo", theme=gr.themes.Default(), css=block_css) as demo: state_image_path = gr.State(value=None) state_session_id = gr.State(value=None) if not embed_mode: gr.Markdown(title_markdown) # if not embed_mode: # gr.HTML( # f""" #
ShowUI is a lightweight vision-language-action model for GUI agents.
# #Note: The red point on the output image represents the predicted clickable coordinates.
""" ) output_coords = gr.Textbox(label="Final Clickable Coordinates") gr.HTML( """🤔 Good or bad? Rate your experience to help us improve! ⬇️
""" ) with gr.Row(elem_id="action-buttons", equal_height=True): upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary") downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary") clear_btn = gr.Button(value="🗑️ Clear", interactive=True) def on_submit(image, query, iterations, is_example_image): if image is None: raise ValueError("No image provided. Please upload an image before submitting.") session_id = datetime.now().strftime("%Y%m%d_%H%M%S") images_during_iterations, click_coords = run_showui(image, query, session_id, iterations) save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image) return images_during_iterations, click_coords, session_id submit_btn.click( on_submit, [imagebox, textbox, iteration_slider, is_example_dropdown], [output_gallery, output_coords, state_session_id], ) clear_btn.click( lambda: (None, None, None, None), inputs=None, outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id], queue=False ) upvote_btn.click( lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image), inputs=[state_session_id, is_example_dropdown], outputs=[], queue=False ) downvote_btn.click( lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image), inputs=[state_session_id, is_example_dropdown], outputs=[], queue=False ) if not embed_mode: gr.Markdown(tos_markdown) gr.Markdown(learn_more_markdown) return demo if __name__ == "__main__": demo = build_demo(embed_mode=False) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, ssr_mode=False, debug=True, )