Spaces:
Sleeping
Sleeping
Orion Weller
commited on
Commit
·
bf8e6b0
1
Parent(s):
68f913d
hopefilly
Browse files- .gitattributes +2 -0
- .gitignore +3 -0
- README.md +0 -0
- analysis.py +41 -0
- app.py +454 -185
- constants.py +142 -0
- dataset_loading.py +163 -0
- local_datasets/codesearch_py/corpus.jsonl +3 -0
- local_datasets/codesearch_py/qrels/test.tsv +3 -0
- local_datasets/codesearch_py/qrels/test.tsv.tmp +3 -0
- local_datasets/codesearch_py/qrels/test.tsv.tmp.2 +3 -0
- local_datasets/codesearch_py/qrels/test.tsv.tmp.2.filtered +3 -0
- local_datasets/codesearch_py/queries.jsonl +3 -0
- local_datasets/gooaq_technical/corpus.jsonl +3 -0
- local_datasets/gooaq_technical/qrels/test.tsv +3 -0
- local_datasets/gooaq_technical/qrels/test.tsv.tmp +3 -0
- local_datasets/gooaq_technical/qrels/test.tsv.tmp.2 +3 -0
- local_datasets/gooaq_technical/qrels/test.tsv.tmp.2.filtered +3 -0
- local_datasets/gooaq_technical/queries.jsonl +3 -0
- packages.txt +1 -0
- requirements.txt +8 -4
- test.tst +55 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
local_datasets/ filter=lfs diff=lfs merge=lfs -text
|
36 |
+
local_datasets/** filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
datasets/
|
2 |
+
__pycache__/
|
3 |
+
env/
|
README.md
CHANGED
File without changes
|
analysis.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.figure_factory as ff
|
5 |
+
|
6 |
+
|
7 |
+
def results_to_df(results: dict, metric_name: str):
|
8 |
+
metric_scores = []
|
9 |
+
for topic, results_dict in results.items():
|
10 |
+
for metric_name_cur, metric_value in results_dict.items():
|
11 |
+
if metric_name == metric_name_cur:
|
12 |
+
metric_scores.append(metric_value)
|
13 |
+
return pd.DataFrame({metric_name: metric_scores})
|
14 |
+
|
15 |
+
|
16 |
+
def create_boxplot_1df(results: dict, metric_name: str):
|
17 |
+
df = results_to_df(results, metric_name)
|
18 |
+
fig = px.box(df, y=metric_name)
|
19 |
+
return fig
|
20 |
+
|
21 |
+
|
22 |
+
def create_boxplot_2df(results1, results2, metric_name):
|
23 |
+
df1 = results_to_df(results1, metric_name)
|
24 |
+
df2 = results_to_df(results2, metric_name)
|
25 |
+
df2["Run"] = "Run 2"
|
26 |
+
df1["Run"] = "Run 1"
|
27 |
+
df = pd.concat([df1, df2])
|
28 |
+
|
29 |
+
# Create distplot with custom bin_size
|
30 |
+
fig = px.histogram(df, x=metric_name, color="Run", marginal="box", hover_data=df.columns)
|
31 |
+
return fig
|
32 |
+
|
33 |
+
|
34 |
+
def create_boxplot_diff(results1, results2, metric_name):
|
35 |
+
df1 = results_to_df(results1, metric_name)
|
36 |
+
df2 = results_to_df(results2, metric_name)
|
37 |
+
diff = df1[metric_name] - df2[metric_name]
|
38 |
+
|
39 |
+
x_axis = f"Difference in {metric_name} from 1 to 2"
|
40 |
+
fig = px.histogram(pd.DataFrame({x_axis: diff}), x=x_axis, marginal="box")
|
41 |
+
return fig
|
app.py
CHANGED
@@ -9,238 +9,507 @@ import pandas as pd
|
|
9 |
from collections import defaultdict
|
10 |
import json
|
11 |
import copy
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
|
24 |
-
did2text[docid].append(inst["text"])
|
25 |
-
sub_did2text[inst["did"]] = inst["text"]
|
26 |
-
elif "query" in inst:
|
27 |
-
docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
|
28 |
-
did2text[docid].append(inst["query"])
|
29 |
-
else:
|
30 |
-
breakpoint()
|
31 |
-
raise NotImplementedError("Need to handle this case")
|
32 |
-
|
33 |
-
return did2text, sub_did2text
|
34 |
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
def get_beir(dataset_name: str):
|
38 |
-
dataset = "scifact"
|
39 |
-
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
|
40 |
-
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
|
41 |
-
data_path = util.download_and_unzip(url, out_dir)
|
42 |
-
return GenericDataLoader(data_folder=data_path).load(split="test")
|
43 |
|
44 |
-
def
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
run_pandas["rank"] = run_pandas["rank"].astype(int)
|
56 |
-
run_pandas.score = run_pandas.score.astype(float)
|
57 |
-
# if run_1_alt is not None:
|
58 |
-
# run_1_alt, run_1_alt_sub = load_jsonl(run_1_alt)
|
59 |
-
return new_run, run_pandas
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
with st.sidebar:
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# sliderbar of how many Top N to choose
|
66 |
top_n = st.slider("Top N", 1, 100, 3)
|
67 |
x = st.header('Upload a run file')
|
68 |
run1_file = st.file_uploader("Choose a file", key="run1")
|
69 |
y = st.header("Upload a second run file")
|
70 |
run2_file = st.file_uploader("Choose a file", key="run2")
|
|
|
|
|
71 |
incorrect_only = st.checkbox("Show only incorrect instances", value=False)
|
72 |
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
|
73 |
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
corpus, queries, qrels = get_beir(dataset_name)
|
80 |
|
81 |
-
evaluator = pytrec_eval.RelevanceEvaluator(
|
82 |
-
qrels, pytrec_eval.supported_measures)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
results2 = evaluator.evaluate(run2)
|
91 |
-
|
92 |
-
|
93 |
-
col1, col2 = st.columns([1, 2], gap="medium")
|
94 |
-
|
95 |
-
incorrect = 0
|
96 |
-
is_better_run1_count = 0
|
97 |
-
is_better_run2_count = 0
|
98 |
-
with col1:
|
99 |
-
st.title("Instances")
|
100 |
-
if run1_file is not None:
|
101 |
-
name_of_columns = ["Overview"] + sorted([int(item) for item in set(run1_pandas.qid.tolist())])
|
102 |
-
checkboxes = [("Overview", st.checkbox("Overview", key=f"0overview"))]
|
103 |
-
st.divider()
|
104 |
-
for idx in range(len(name_of_columns)):
|
105 |
-
if not idx:
|
106 |
-
continue
|
107 |
-
is_incorrect = False
|
108 |
-
is_better_run1 = False
|
109 |
-
is_better_run2 = False
|
110 |
-
|
111 |
-
run1_score = results1[str(name_of_columns[idx])][metric_name] if idx else 1
|
112 |
-
if run2_file is not None:
|
113 |
-
run2_score = results2[str(name_of_columns[idx])][metric_name] if idx else 1
|
114 |
-
|
115 |
-
if idx and run1_score == 0 or run2_score == 0:
|
116 |
-
incorrect += 1
|
117 |
-
is_incorrect = True
|
118 |
-
|
119 |
-
if idx and run1_score > run2_score:
|
120 |
-
is_better_run1_count += 1
|
121 |
-
is_better_run1 = True
|
122 |
-
elif idx and run2_score > run1_score:
|
123 |
-
is_better_run2_count += 1
|
124 |
-
is_better_run2 = True
|
125 |
-
|
126 |
-
if not incorrect_only or is_incorrect:
|
127 |
-
if not one_better_than_two or is_better_run1:
|
128 |
-
if not two_better_than_one or is_better_run2:
|
129 |
-
check = st.checkbox(str(name_of_columns[idx]), key=f"{idx}check")
|
130 |
-
st.divider()
|
131 |
-
checkboxes.append((name_of_columns[idx], check))
|
132 |
-
else:
|
133 |
-
if idx and run1_score == 0:
|
134 |
-
incorrect += 1
|
135 |
-
is_incorrect = True
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
else:
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
156 |
-
query_text = queries[str(inst_num)]
|
157 |
-
st.markdown(query_text)
|
158 |
-
st.divider()
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
167 |
|
168 |
-
|
169 |
-
pred_doc = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)]
|
170 |
-
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]["rank"].tolist()
|
171 |
-
st.subheader("Ranked of Documents")
|
172 |
-
st.markdown(f"Rank: {rank_pred}")
|
173 |
|
174 |
-
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
for d_idx, doc in enumerate(run1_top_n_docs):
|
181 |
-
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}:
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
if inst_num == "Overview":
|
194 |
-
st.header("Overview")
|
195 |
-
st.markdown("TODO: Add overview")
|
196 |
-
else:
|
197 |
-
st.header(f"Instance Number: {inst_num}")
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
|
204 |
-
## Documents
|
205 |
-
# relevant
|
206 |
-
relevant_docs = list(qrels[str(inst_num)].keys())
|
207 |
-
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
208 |
-
st.subheader("Relevant Documents")
|
209 |
-
for (docid, title, text) in doc_texts:
|
210 |
-
st.text_area(f"{docid}: {title}", text)
|
211 |
|
212 |
-
|
213 |
-
pred_doc1 = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)]
|
214 |
-
rank_pred1 = pred_doc1[pred_doc1.qid == str(inst_num)]["rank"].tolist()
|
215 |
-
pred_doc2 = run2_pandas[run2_pandas.doc_id.isin(relevant_docs)]
|
216 |
-
rank_pred2 = pred_doc2[pred_doc2.qid == str(inst_num)]["rank"].tolist()
|
217 |
-
st.subheader("Ranked of Documents")
|
218 |
-
st.markdown(f"Run 1 Rank: {rank_pred1}")
|
219 |
-
st.markdown(f"Run 2 Rank: {rank_pred2}")
|
220 |
|
221 |
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
for d_idx, doc in enumerate(run1_top_n_docs):
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
for d_idx, doc in enumerate(run2_top_n_docs):
|
236 |
-
|
|
|
|
|
237 |
|
238 |
-
st.divider()
|
239 |
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
|
245 |
-
|
|
|
|
|
246 |
|
|
|
|
|
|
9 |
from collections import defaultdict
|
10 |
import json
|
11 |
import copy
|
12 |
+
import plotly.express as px
|
13 |
|
14 |
+
from constants import ALL_DATASETS, ALL_METRICS
|
15 |
+
from dataset_loading import get_dataset, load_run, load_local_qrels, load_local_corpus, load_local_queries
|
16 |
+
from analysis import create_boxplot_1df, create_boxplot_2df, create_boxplot_diff
|
17 |
+
|
18 |
+
|
19 |
+
st.set_page_config(layout="wide")
|
20 |
+
|
21 |
+
|
22 |
+
if 'cur_instance_num' not in st.session_state:
|
23 |
+
st.session_state.cur_instance_num = -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
+
def update_details(run_details, run_score):
|
27 |
+
if run_score == 0:
|
28 |
+
run_details["none"] += 1
|
29 |
+
elif run_score == 1:
|
30 |
+
run_details["perfect"] += 1
|
31 |
+
else:
|
32 |
+
run_details["inbetween"] += 1
|
33 |
+
return run_details
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
def check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
37 |
+
if run1_file is not None and dataset_name not in ["", None, "custom"]:
|
38 |
+
return True
|
39 |
+
elif run1_file is not None and dataset_name == "custom":
|
40 |
+
if qrels is not None and queries is not None and corpus is not None:
|
41 |
+
return True
|
42 |
+
return False
|
43 |
|
44 |
+
def validate(config_option, file_loaded):
|
45 |
+
if config_option != "None" and file_loaded is None:
|
46 |
+
st.error("Please upload a file for " + config_option)
|
47 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
+
def combine(text_og, text_new, combine_type):
|
51 |
+
if combine_type == "None":
|
52 |
+
return text_og
|
53 |
+
elif combine_type == "Append":
|
54 |
+
return text_og + " <APPEND> " + text_new
|
55 |
+
elif combine_type == "Prepend":
|
56 |
+
return text_new + " <PREPEND> " + text_og
|
57 |
+
elif combine_type == "Replace":
|
58 |
+
return text_new
|
59 |
+
else:
|
60 |
+
raise ValueError("Invalid combine type")
|
61 |
+
|
62 |
with st.sidebar:
|
63 |
+
st.title("Options")
|
64 |
+
dataset_name = st.selectbox("Select a preloaded dataset or upload your own", tuple(ALL_DATASETS))
|
65 |
+
metric_name = st.selectbox("Select a metric", tuple(ALL_METRICS))
|
66 |
+
|
67 |
+
if dataset_name == "custom":
|
68 |
+
st.header("Upload corpus")
|
69 |
+
corpus_file = st.file_uploader("Choose a file", key="corpus")
|
70 |
+
corpus = load_local_corpus(corpus_file)
|
71 |
+
st.header("Upload queries")
|
72 |
+
queries_file = st.file_uploader("Choose a file", key="queries")
|
73 |
+
queries = load_local_queries(queries_file)
|
74 |
+
st.header("Upload qrels")
|
75 |
+
qrels_file = st.file_uploader("Choose a file", key="qrels")
|
76 |
+
qrels = load_local_qrels(qrels_file)
|
77 |
+
else:
|
78 |
+
qrels = None
|
79 |
+
queries = None
|
80 |
+
corpus = None
|
81 |
+
|
82 |
# sliderbar of how many Top N to choose
|
83 |
top_n = st.slider("Top N", 1, 100, 3)
|
84 |
x = st.header('Upload a run file')
|
85 |
run1_file = st.file_uploader("Choose a file", key="run1")
|
86 |
y = st.header("Upload a second run file")
|
87 |
run2_file = st.file_uploader("Choose a file", key="run2")
|
88 |
+
|
89 |
+
z = st.header("Analysis Options")
|
90 |
incorrect_only = st.checkbox("Show only incorrect instances", value=False)
|
91 |
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
|
92 |
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
|
93 |
+
advanced_options1 = st.checkbox("Show advanced options for Run 1", value=False)
|
94 |
+
doc_expansion1 = doc_expansion2 = None
|
95 |
+
query_expansion1 = query_expansion2 = None
|
96 |
+
run1_uses_query_expansion = "None"
|
97 |
+
run1_uses_doc_expansion = "None"
|
98 |
+
run2_uses_query_expansion = "None"
|
99 |
+
run2_uses_doc_expansion = "None"
|
100 |
+
if advanced_options1:
|
101 |
+
doc_header = st.header("Upload a Document Expansion file")
|
102 |
+
doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion")
|
103 |
+
if doc_expansion_file is not None:
|
104 |
+
doc_expansion1 = load_local_corpus(doc_expansion_file)
|
105 |
+
query_header = st.header("Upload a Query Expansion file")
|
106 |
+
query_expansion_file = st.file_uploader("Choose a file", key="query_expansion")
|
107 |
+
if query_expansion_file is not None:
|
108 |
+
query_expansion1 = load_local_queries(query_expansion_file)
|
109 |
+
|
110 |
+
run1_uses_query_expansion = st.selectbox("Type of query expansion used in run 1", ("None", "Append", "Prepend", "Replace"))
|
111 |
+
run1_uses_doc_expansion = st.selectbox("Type of document expansion used in run 1", ("None", "Append", "Prepend", "Replace"))
|
112 |
+
validate(run1_uses_query_expansion, query_expansion_file)
|
113 |
+
validate(run1_uses_doc_expansion, doc_expansion_file)
|
114 |
+
|
115 |
+
advanced_options2 = st.checkbox("Show advanced options for Run 2", value=False)
|
116 |
+
if advanced_options2:
|
117 |
+
doc_header = st.header("Upload a Document Expansion file")
|
118 |
+
doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion2")
|
119 |
+
if doc_expansion_file is not None:
|
120 |
+
doc_expansion2 = load_local_corpus(doc_expansion_file)
|
121 |
+
query_header = st.header("Upload a Query Expansion file")
|
122 |
+
query_expansion_file = st.file_uploader("Choose a file", key="query_expansion2")
|
123 |
+
if query_expansion_file is not None:
|
124 |
+
query_expansion2 = load_local_queries(query_expansion_file)
|
125 |
+
|
126 |
+
run2_uses_query_expansion = st.selectbox("Type of query expansion used in run 2", ("None", "Append", "Prepend", "Replace"))
|
127 |
+
run2_uses_doc_expansion = st.selectbox("Type of document expansion used in run 2", ("None", "Append", "Prepend", "Replace"))
|
128 |
+
validate(run2_uses_query_expansion, query_expansion_file)
|
129 |
+
validate(run2_uses_doc_expansion, doc_expansion_file)
|
130 |
+
|
131 |
+
|
132 |
+
# everything hinges on the run being uploaded, so do that first
|
133 |
+
# init_title = st.title("Upload Run and Choose Details")
|
134 |
+
|
135 |
+
if run1_file is not None:
|
136 |
+
run1, run1_pandas = load_run(run1_file)
|
137 |
|
138 |
+
# do everything, now that we have the run file
|
139 |
+
if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
140 |
+
# init_title = st.title("Analysis")
|
141 |
+
# don't load these til a run is given
|
142 |
+
if dataset_name != "custom":
|
143 |
+
corpus, queries, qrels = get_dataset(dataset_name)
|
144 |
|
145 |
+
evaluator = pytrec_eval.RelevanceEvaluator(
|
146 |
+
copy.deepcopy(qrels), pytrec_eval.supported_measures)
|
147 |
+
results1 = evaluator.evaluate(run1) # dict of instance then metrics then values
|
148 |
+
if len(results1) == 0:
|
149 |
+
# alert and stop
|
150 |
+
st.error("Run file is empty")
|
151 |
+
st.stop()
|
152 |
+
|
153 |
+
if run2_file is not None:
|
154 |
+
run2, run2_pandas = load_run(run2_file)
|
155 |
+
# NOTE: will fail if run1 is not uploaded
|
156 |
+
evaluator2 = pytrec_eval.RelevanceEvaluator(
|
157 |
+
copy.deepcopy(qrels), pytrec_eval.supported_measures)
|
158 |
+
results2 = evaluator2.evaluate(run2)
|
159 |
+
|
160 |
+
col1, col2 = st.columns([1, 3], gap="large")
|
161 |
+
|
162 |
+
# incorrect = 0
|
163 |
+
is_better_run1_count = 0
|
164 |
+
is_better_run2_count = 0
|
165 |
+
is_same_count = 0
|
166 |
+
run1_details = {"none": 0, "perfect": 0, "inbetween": 0}
|
167 |
+
run2_details = {"none": 0, "perfect": 0, "inbetween": 0}
|
168 |
+
with col1:
|
169 |
+
st.title("Instances")
|
170 |
+
if run1_file is not None:
|
171 |
+
set_of_cols = set(run1_pandas.qid.tolist())
|
172 |
+
container_for_nav = st.container()
|
173 |
+
name_of_columns = sorted([item for item in set_of_cols])
|
174 |
+
instances_to_use = []
|
175 |
+
# st.divider()
|
176 |
+
for idx in range(len(name_of_columns)):
|
177 |
+
is_incorrect = False
|
178 |
+
is_better_run1 = False
|
179 |
+
is_better_run2 = False
|
180 |
+
|
181 |
+
run1_score = results1[str(name_of_columns[idx])][metric_name] if idx else 1
|
182 |
+
run1_details = update_details(run1_details, run1_score)
|
183 |
+
if run2_file is not None:
|
184 |
+
run2_score = results2[str(name_of_columns[idx])][metric_name] if idx else 1
|
185 |
+
run2_details = update_details(run2_details, run2_score)
|
186 |
+
|
187 |
+
if run1_score == 0 or run2_score == 0:
|
188 |
+
is_incorrect = True
|
189 |
+
|
190 |
+
if run1_score > run2_score:
|
191 |
+
is_better_run1_count += 1
|
192 |
+
is_better_run1 = True
|
193 |
+
elif run2_score > run1_score:
|
194 |
+
is_better_run2_count += 1
|
195 |
+
is_better_run2 = True
|
196 |
+
else:
|
197 |
+
is_same_count += 1
|
198 |
+
|
199 |
+
|
200 |
+
if not incorrect_only or is_incorrect:
|
201 |
+
if not one_better_than_two or is_better_run1:
|
202 |
+
if not two_better_than_one or is_better_run2:
|
203 |
+
# check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check")
|
204 |
+
# st.divider()
|
205 |
+
instances_to_use.append(name_of_columns[idx])
|
206 |
+
else:
|
207 |
+
if run1_score == 0:
|
208 |
+
is_incorrect = True
|
209 |
+
|
210 |
+
if not incorrect_only or is_incorrect:
|
211 |
+
# check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check")
|
212 |
+
# st.divider()
|
213 |
+
instances_to_use.append(name_of_columns[idx])
|
214 |
|
215 |
|
216 |
+
def sync_from_drop():
|
217 |
+
if st.session_state.selectbox_instance == "Overview":
|
218 |
+
st.session_state.number_of_col = -1
|
219 |
+
st.session_state.cur_instance_num = -1
|
220 |
+
else:
|
221 |
+
index_of_obj = name_of_columns.index(st.session_state.selectbox_instance)
|
222 |
+
# print("Index of obj: ", index_of_obj, type(index_of_obj))
|
223 |
+
st.session_state.number_of_col = index_of_obj
|
224 |
+
st.session_state.cur_instance_num = index_of_obj
|
225 |
+
|
226 |
+
def sync_from_number():
|
227 |
+
st.session_state.cur_instance_num = st.session_state.number_of_col
|
228 |
+
# print("Session state number of col: ", st.session_state.number_of_col, type(st.session_state.number_of_col))
|
229 |
+
if st.session_state.number_of_col == -1:
|
230 |
+
st.session_state.selectbox_instance = "Overview"
|
231 |
+
else:
|
232 |
+
st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col]
|
233 |
+
|
234 |
+
|
235 |
+
number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use), on_change=sync_from_number, label=f"Select instance by index (out of **{len(instances_to_use)}**)", key="number_of_col")
|
236 |
+
selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
|
237 |
+
st.divider()
|
238 |
+
# make pie plot showing incorrect vs correct
|
239 |
+
st.header("Breakdown")
|
240 |
+
if run2_file is None:
|
241 |
+
plotly_pie_chart = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
|
242 |
+
st.write("Run 1 Scores")
|
243 |
+
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
244 |
+
st.plotly_chart(plotly_pie_chart, use_container_width=True)
|
245 |
+
else:
|
246 |
+
if st.checkbox("Show Run 1 vs Run 2", value=True):
|
247 |
+
plotly_pie_chart = px.pie(names=["Run 1 Better", "Run 2 Better", "Tied"], values=[is_better_run1_count, is_better_run2_count, is_same_count])
|
248 |
+
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
249 |
+
st.plotly_chart(plotly_pie_chart, use_container_width=True)
|
250 |
+
|
251 |
+
if st.checkbox("Show Run 1 Breakdown"):
|
252 |
+
plotly_pie_chart_run1 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
|
253 |
+
plotly_pie_chart_run1.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
254 |
+
st.plotly_chart(plotly_pie_chart_run1, use_container_width=True)
|
255 |
+
if st.checkbox("Show Run 2 Breakdown"):
|
256 |
+
plotly_pie_chart_run2 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run2_details["perfect"], run2_details["inbetween"], run2_details["none"]])
|
257 |
+
plotly_pie_chart_run2.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
258 |
+
st.plotly_chart(plotly_pie_chart_run2, use_container_width=True)
|
259 |
|
|
|
260 |
|
|
|
|
|
261 |
|
262 |
+
with col2:
|
263 |
+
# st.title(f"Information ({len(checkboxes) - 1}/{len(name_of_columns) - 1})")
|
264 |
+
### Only one run file
|
265 |
+
if run1_file is not None and run2_file is None:
|
266 |
|
267 |
+
# get instance number
|
268 |
+
inst_index = number_of_col
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
+
if inst_index >= 0:
|
271 |
+
inst_num = instances_to_use[inst_index - 1]
|
272 |
+
|
273 |
+
st.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 1</h1>", unsafe_allow_html=True)
|
274 |
+
|
275 |
+
container = st.container()
|
276 |
+
|
277 |
+
rank_col, score_col, id_col = container.columns([2,1,3])
|
278 |
+
id_col.metric("ID", inst_num)
|
279 |
+
score_col.metric(metric_name, results1[str(inst_num)][metric_name])
|
280 |
+
|
281 |
+
# st.subheader(f"ID")
|
282 |
+
# st.markdown(inst_num)
|
283 |
+
st.divider()
|
284 |
+
|
285 |
+
st.subheader(f"Query")
|
286 |
+
if run1_uses_query_expansion != "None":
|
287 |
+
show_orig_rel = st.checkbox("Show Original Query", key=f"{inst_index}reloriguery", value=False)
|
288 |
+
|
289 |
+
query_text_og = queries[str(inst_num)]
|
290 |
+
if query_expansion1 is not None and run1_uses_query_expansion != "None" and not show_orig_rel:
|
291 |
+
alt_text = query_expansion1[str(inst_num)]
|
292 |
+
query_text = combine(query_text_og, alt_text, run1_uses_query_expansion)
|
293 |
else:
|
294 |
+
query_text = query_text_og
|
295 |
+
st.markdown(query_text)
|
296 |
+
st.divider()
|
297 |
+
|
298 |
+
## Documents
|
299 |
+
# relevant
|
300 |
+
relevant_docs = list(qrels[str(inst_num)].keys())
|
301 |
+
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
302 |
+
st.subheader("Relevant Documents")
|
303 |
+
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
304 |
+
show_orig_rel = st.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig", value=False)
|
305 |
+
|
306 |
+
for (docid, title, text) in doc_texts:
|
307 |
+
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel:
|
308 |
+
alt_text = doc_expansion1[docid]["text"]
|
309 |
+
text = combine(text, alt_text, run1_uses_doc_expansion)
|
310 |
+
st.text_area(f"{docid}:", text)
|
311 |
|
312 |
+
|
|
|
|
|
|
|
313 |
|
314 |
+
pred_doc = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)]
|
315 |
+
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]["rank"].tolist()
|
316 |
+
# st.subheader("Ranked of Documents")
|
317 |
+
# st.markdown(f"Rank: {rank_pred}")
|
318 |
+
ranking_str = ",".join([str(item) for item in rank_pred]) if type(rank_pred) == list else str(rank_pred)
|
319 |
+
if ranking_str == "":
|
320 |
+
ranking_str = "--"
|
321 |
+
rank_col.metric(f"Rank of Relevant Doc(s)", ranking_str)
|
322 |
|
323 |
+
st.divider()
|
|
|
|
|
|
|
|
|
324 |
|
325 |
+
# top ranked
|
326 |
|
327 |
+
if st.checkbox('Show top ranked documents', key=f"{inst_index}top-1run"):
|
328 |
+
st.subheader("Top N Ranked Documents")
|
329 |
+
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
330 |
+
show_orig_rel_ranked = st.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs", value=False)
|
331 |
+
|
332 |
+
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n]
|
333 |
+
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
334 |
+
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked:
|
335 |
+
run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
336 |
+
for d_idx, doc in enumerate(run1_top_n_docs):
|
337 |
+
alt_text = run1_top_n_docs_alt[d_idx]["text"]
|
338 |
+
doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion)
|
339 |
+
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}")
|
340 |
+
else:
|
341 |
for d_idx, doc in enumerate(run1_top_n_docs):
|
342 |
+
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}")
|
343 |
+
st.divider()
|
344 |
+
|
345 |
+
# none checked
|
346 |
+
elif inst_index < 0:
|
347 |
+
st.title("Overview")
|
348 |
+
st.subheader(f"Scores of {metric_name}")
|
349 |
+
plotly_chart = create_boxplot_1df(results1, metric_name)
|
350 |
+
st.plotly_chart(plotly_chart)
|
351 |
+
|
352 |
+
## Both run files available
|
353 |
+
elif run1_file is not None and run2_file is not None:
|
354 |
+
has_check = False
|
355 |
+
container_top = st.container()
|
356 |
+
|
357 |
+
# get instance number
|
358 |
+
inst_index = number_of_col
|
359 |
+
|
360 |
+
if inst_index >= 0:
|
361 |
+
inst_num = instances_to_use[inst_index]
|
362 |
+
|
363 |
+
col_run1, col_run2 = container_top.columns([1,1])
|
364 |
+
col_run1.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 1</h1>", unsafe_allow_html=True)
|
365 |
+
col_run2.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 2</h1>", unsafe_allow_html=True)
|
366 |
+
|
367 |
+
container_overview = st.container()
|
368 |
+
rank_col1, score_col1, rank_col2, score_col2 = container_overview.columns([2,1,2,1])
|
369 |
+
# id_col1.metric("", "")
|
370 |
+
score_col1.metric("Run 1 " + metric_name, results1[str(inst_num)][metric_name])
|
371 |
+
score_col2.metric("Run 2 " + metric_name, results2[str(inst_num)][metric_name])
|
372 |
+
|
373 |
+
st.divider()
|
374 |
+
|
375 |
+
st.subheader(f"Query")
|
376 |
+
container_two_query = st.container()
|
377 |
+
col_run1, col_run2 = container_two_query.columns(2, gap="medium")
|
378 |
+
|
379 |
+
query_text_og = queries[str(inst_num)]
|
380 |
+
if run1_uses_query_expansion != "None" and run2_uses_query_expansion != "None":
|
381 |
+
alt_text1 = query_expansion1[str(inst_num)]
|
382 |
+
alt_text2 = query_expansion2[str(inst_num)]
|
383 |
+
combined_text1 = combine(query_text_og, alt_text1, run1_uses_query_expansion)
|
384 |
+
combined_text2 = combine(query_text_og, alt_text2, run2_uses_query_expansion)
|
385 |
+
col_run1.markdown(combined_text1)
|
386 |
+
col_run2.markdown(combined_text2)
|
387 |
+
elif run1_uses_query_expansion != "None":
|
388 |
+
alt_text = query_expansion1[str(inst_num)]
|
389 |
+
combined_text1 = combine(query_text_og, alt_text, run1_uses_query_expansion)
|
390 |
+
col_run1.markdown(combined_text1)
|
391 |
+
col_run2.markdown(query_text_og)
|
392 |
+
elif run2_uses_query_expansion != "None":
|
393 |
+
alt_text = query_expansion2[str(inst_num)]
|
394 |
+
combined_text2 = combine(query_text_og, alt_text, run2_uses_query_expansion)
|
395 |
+
col_run1.markdown(query_text_og)
|
396 |
+
col_run2.markdown(combined_text2)
|
397 |
+
else:
|
398 |
+
query_text = query_text_og
|
399 |
+
col_run1.markdown(query_text)
|
400 |
+
col_run2.markdown(query_text)
|
401 |
+
|
402 |
+
st.divider()
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
## Documents
|
407 |
+
# relevant
|
408 |
+
st.subheader("Relevant Documents")
|
409 |
+
container_two_docs_rel = st.container()
|
410 |
+
col_run1, col_run2 = container_two_docs_rel.columns(2, gap="medium")
|
411 |
+
relevant_docs = list(qrels[str(inst_num)].keys())
|
412 |
+
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
413 |
+
|
414 |
+
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
415 |
+
show_orig_rel1 = col_run1.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run1", value=False)
|
416 |
+
if doc_expansion2 is not None and run2_uses_doc_expansion != "None":
|
417 |
+
show_orig_rel2 = col_run2.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run2", value=False)
|
418 |
+
|
419 |
+
for (docid, title, text) in doc_texts:
|
420 |
+
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel1:
|
421 |
+
alt_text = doc_expansion1[docid]["text"]
|
422 |
+
text = combine(text, alt_text, run1_uses_doc_expansion)
|
423 |
+
col_run1.text_area(f"{docid}:", text, key=f"{inst_num}doc{docid}1")
|
424 |
+
|
425 |
+
for (docid, title, text) in doc_texts:
|
426 |
+
if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel2:
|
427 |
+
alt_text = doc_expansion2[docid]["text"]
|
428 |
+
text = combine(text, alt_text, run2_uses_doc_expansion)
|
429 |
+
col_run2.text_area(f"{docid}:", text, key=f"{inst_num}doc{docid}2")
|
430 |
+
|
431 |
+
# top ranked
|
432 |
+
# NOTE: BEIR calls trec_eval which ranks by score, then doc_id for ties
|
433 |
+
# we have to fix that or we don't match the scores
|
434 |
+
pred_doc1 = run1_pandas[run1_pandas.qid == inst_num].sort_values(["score", "doc_id"], ascending=[False, False])
|
435 |
+
pred_doc1["rank_real"] = list(range(1, len(pred_doc1) + 1))
|
436 |
+
rank_pred1 = pred_doc1[pred_doc1.doc_id.isin(relevant_docs)]["rank_real"].tolist()
|
437 |
+
|
438 |
+
pred_doc2 = run2_pandas[run2_pandas.qid == inst_num].sort_values(["score", "doc_id"], ascending=[False, False])
|
439 |
+
pred_doc2["rank_real"] = list(range(1, len(pred_doc2) + 1))
|
440 |
+
rank_pred2 = pred_doc2[pred_doc2.doc_id.isin(relevant_docs)]["rank_real"].tolist()
|
441 |
|
442 |
|
443 |
+
# st.subheader("Ranked of Documents")
|
444 |
+
# st.markdown(f"Run 1 Rank: {rank_pred1}")
|
445 |
+
# st.markdown(f"Run 2 Rank: {rank_pred2}")
|
446 |
|
447 |
+
ranking_str = ",".join([str(item) for item in rank_pred1]) if type(rank_pred1) == list else str(rank_pred1)
|
448 |
+
if ranking_str == "":
|
449 |
+
ranking_str = "--"
|
450 |
+
rank_col1.metric("Run 1 " + f"Rank of Relevant Doc(s)", ranking_str)
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
+
ranking_str2 = ",".join([str(item) for item in rank_pred2]) if type(rank_pred2) == list else str(rank_pred2)
|
453 |
+
if ranking_str2 == "":
|
454 |
+
ranking_str2 = "--"
|
455 |
+
rank_col2.metric("Run 2 " + f"Rank of Relevant Doc(s)", ranking_str2)
|
456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
|
458 |
+
st.divider()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
|
460 |
|
461 |
+
container_two_docs_ranked = st.container()
|
462 |
+
col_run1, col_run2 = container_two_docs_ranked.columns(2, gap="medium")
|
463 |
+
|
464 |
+
if col_run1.checkbox('Show top ranked documents for Run 1', key=f"{inst_index}top-1run"):
|
465 |
+
col_run1.subheader("Top N Ranked Documents")
|
466 |
+
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
467 |
+
show_orig_rel_ranked1 = col_run1.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs1", value=False)
|
468 |
|
469 |
+
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n]
|
470 |
+
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
471 |
+
|
472 |
+
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked1:
|
473 |
+
run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
474 |
+
for d_idx, doc in enumerate(run1_top_n_docs):
|
475 |
+
alt_text = run1_top_n_docs_alt[d_idx]["text"]
|
476 |
+
doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion)
|
477 |
+
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1")
|
478 |
+
else:
|
479 |
for d_idx, doc in enumerate(run1_top_n_docs):
|
480 |
+
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1")
|
481 |
+
|
482 |
+
if col_run2.checkbox('Show top ranked documents for Run 2', key=f"{inst_index}top-2run"):
|
483 |
+
col_run2.subheader("Top N Ranked Documents")
|
484 |
+
if doc_expansion2 is not None and run2_uses_doc_expansion != "None":
|
485 |
+
show_orig_rel_ranked2 = col_run2.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs2", value=False)
|
486 |
+
run2_top_n = run2_pandas[run2_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n]
|
487 |
+
run2_top_n_docs = [corpus[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
|
488 |
+
|
489 |
+
|
490 |
+
if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel_ranked2:
|
491 |
+
run2_top_n_docs_alt = [doc_expansion2[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
|
492 |
+
for d_idx, doc in enumerate(run2_top_n_docs):
|
493 |
+
alt_text = run2_top_n_docs_alt[d_idx]["text"]
|
494 |
+
doc_text = combine(doc["text"], alt_text, run2_uses_doc_expansion)
|
495 |
+
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2")
|
496 |
+
else:
|
497 |
for d_idx, doc in enumerate(run2_top_n_docs):
|
498 |
+
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2")
|
499 |
+
|
500 |
+
st.divider()
|
501 |
|
|
|
502 |
|
503 |
+
else:
|
504 |
+
st.title("Overview")
|
505 |
|
506 |
+
st.subheader(f"Scores of {metric_name}")
|
507 |
+
fig = create_boxplot_2df(results1, results2, metric_name)
|
508 |
+
st.plotly_chart(fig)
|
509 |
|
510 |
+
st.subheader(f"Score Difference of {metric_name}")
|
511 |
+
fig_comp = create_boxplot_diff(results1, results2, metric_name)
|
512 |
+
st.plotly_chart(fig_comp)
|
513 |
|
514 |
+
else:
|
515 |
+
st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)")
|
constants.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
ALL_METRICS = [
|
3 |
+
"ndcg_cut_10",
|
4 |
+
"ndcg_cut_5",
|
5 |
+
"ndcg_cut_15",
|
6 |
+
"ndcg_cut_20",
|
7 |
+
"ndcg_cut_30",
|
8 |
+
"ndcg_cut_100",
|
9 |
+
"ndcg_cut_200",
|
10 |
+
"ndcg_cut_500",
|
11 |
+
"ndcg_cut_1000",
|
12 |
+
"map",
|
13 |
+
"P_5",
|
14 |
+
"P_10",
|
15 |
+
"P_15",
|
16 |
+
"P_20",
|
17 |
+
"P_30",
|
18 |
+
"P_100",
|
19 |
+
"P_200",
|
20 |
+
"P_500",
|
21 |
+
"P_1000",
|
22 |
+
"recall_5",
|
23 |
+
"recall_10",
|
24 |
+
"recall_15",
|
25 |
+
"recall_20",
|
26 |
+
"recall_30",
|
27 |
+
"recall_100",
|
28 |
+
"recall_200",
|
29 |
+
"recall_500",
|
30 |
+
"recall_1000",
|
31 |
+
"recip_rank",
|
32 |
+
"set_recall",
|
33 |
+
"set_P",
|
34 |
+
"set_F",
|
35 |
+
"num_rel_ret",
|
36 |
+
"num_ret",
|
37 |
+
"num_rel",
|
38 |
+
"num_q",
|
39 |
+
"num_rel",
|
40 |
+
"num_rel_ret"
|
41 |
+
"Rprec",
|
42 |
+
"bpref",
|
43 |
+
"iprec_at_recall_0.00",
|
44 |
+
"iprec_at_recall_0.10",
|
45 |
+
"iprec_at_recall_0.20",
|
46 |
+
"iprec_at_recall_0.30",
|
47 |
+
"iprec_at_recall_0.40",
|
48 |
+
"iprec_at_recall_0.50",
|
49 |
+
"iprec_at_recall_0.60",
|
50 |
+
"iprec_at_recall_0.70",
|
51 |
+
"iprec_at_recall_0.80",
|
52 |
+
"iprec_at_recall_0.90",
|
53 |
+
"iprec_at_recall_1.00",
|
54 |
+
]
|
55 |
+
|
56 |
+
|
57 |
+
BEIR = [
|
58 |
+
"msmarco",
|
59 |
+
"trec-covid",
|
60 |
+
"nf_corpus",
|
61 |
+
"bioasq",
|
62 |
+
"nq",
|
63 |
+
"hotpotqa",
|
64 |
+
"fiqa",
|
65 |
+
"signal1m",
|
66 |
+
"trec-news",
|
67 |
+
"robust04",
|
68 |
+
"arguana",
|
69 |
+
"webis-touche2020",
|
70 |
+
"cqadupstack",
|
71 |
+
"quora",
|
72 |
+
"dbpedia-entity",
|
73 |
+
"scidocs",
|
74 |
+
"fever",
|
75 |
+
"climate-fever",
|
76 |
+
"scifact",
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
IR_DATASETS = [
|
81 |
+
"antique",
|
82 |
+
"aol_ia",
|
83 |
+
"aquaint",
|
84 |
+
"argsme",
|
85 |
+
"c4",
|
86 |
+
"car",
|
87 |
+
"clinicaltrials",
|
88 |
+
"clirmatrix",
|
89 |
+
"clueweb09",
|
90 |
+
"clueweb12",
|
91 |
+
"codec",
|
92 |
+
"cord19",
|
93 |
+
"cranfield",
|
94 |
+
"disks45",
|
95 |
+
"dpr_w100",
|
96 |
+
"codesearchnet",
|
97 |
+
"gov",
|
98 |
+
"gov2",
|
99 |
+
"highwire",
|
100 |
+
"istella22",
|
101 |
+
"kilt",
|
102 |
+
"lotte",
|
103 |
+
"medline",
|
104 |
+
"mmarco",
|
105 |
+
"mr_tydi",
|
106 |
+
"msmarco_document",
|
107 |
+
"msmarco_document_v2",
|
108 |
+
"msmarco_passage",
|
109 |
+
"msmarco_passage_v2",
|
110 |
+
"msmarco_qna",
|
111 |
+
"neumarco",
|
112 |
+
"nfcorpus",
|
113 |
+
"natural_questions",
|
114 |
+
"nyt",
|
115 |
+
"pmc",
|
116 |
+
"touche_image",
|
117 |
+
"touche",
|
118 |
+
"trec_arabic",
|
119 |
+
"trec_mandarin",
|
120 |
+
"trec_spanish",
|
121 |
+
"trec_robust04",
|
122 |
+
"trec_tot",
|
123 |
+
"tripclick",
|
124 |
+
"tweets2013_ia",
|
125 |
+
"vaswani",
|
126 |
+
"wapo",
|
127 |
+
"wikiclir",
|
128 |
+
"wikir",
|
129 |
+
"trec_fair",
|
130 |
+
"trec_cast",
|
131 |
+
"hc4",
|
132 |
+
"neuclir",
|
133 |
+
"sara",
|
134 |
+
]
|
135 |
+
|
136 |
+
LOCAL_DATASETS = [
|
137 |
+
"gooaq_technical",
|
138 |
+
"codesearch_py",
|
139 |
+
]
|
140 |
+
|
141 |
+
|
142 |
+
ALL_DATASETS = ["", "custom"] + LOCAL_DATASETS + BEIR + IR_DATASETS
|
dataset_loading.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
import beir
|
5 |
+
from beir import util
|
6 |
+
from beir.datasets.data_loader import GenericDataLoader
|
7 |
+
import pytrec_eval
|
8 |
+
import pandas as pd
|
9 |
+
from collections import defaultdict
|
10 |
+
import json
|
11 |
+
import copy
|
12 |
+
import ir_datasets
|
13 |
+
|
14 |
+
|
15 |
+
from constants import BEIR, IR_DATASETS, LOCAL_DATASETS
|
16 |
+
|
17 |
+
def load_local_corpus(corpus_file, columns_to_combine=["title", "text"]):
|
18 |
+
if corpus_file is None:
|
19 |
+
return None
|
20 |
+
did2text = {}
|
21 |
+
id_key = "_id"
|
22 |
+
with corpus_file as f:
|
23 |
+
for idx, line in enumerate(f):
|
24 |
+
uses_bytes = not (type(line) == str)
|
25 |
+
if uses_bytes:
|
26 |
+
if idx == 0 and "doc_id" in line.decode("utf-8"):
|
27 |
+
continue
|
28 |
+
inst = json.loads(line.decode("utf-8"))
|
29 |
+
else:
|
30 |
+
if idx == 0 and "doc_id" in line:
|
31 |
+
continue
|
32 |
+
inst = json.loads(line)
|
33 |
+
all_text = " ".join([inst[col] for col in columns_to_combine if col in inst])
|
34 |
+
if id_key not in inst:
|
35 |
+
id_key = "doc_id"
|
36 |
+
did2text[inst[id_key]] = {
|
37 |
+
"text": all_text,
|
38 |
+
"title": inst["title"] if "title" in inst else "",
|
39 |
+
}
|
40 |
+
return did2text
|
41 |
+
|
42 |
+
def load_local_queries(queries_file):
|
43 |
+
if queries_file is None:
|
44 |
+
return None
|
45 |
+
qid2text = {}
|
46 |
+
id_key = "_id"
|
47 |
+
with queries_file as f:
|
48 |
+
for idx, line in enumerate(f):
|
49 |
+
uses_bytes = not (type(line) == str)
|
50 |
+
if uses_bytes:
|
51 |
+
if idx == 0 and "query_id" in line.decode("utf-8"):
|
52 |
+
continue
|
53 |
+
inst = json.loads(line.decode("utf-8"))
|
54 |
+
else:
|
55 |
+
if idx == 0 and "query_id" in line:
|
56 |
+
continue
|
57 |
+
inst = json.loads(line)
|
58 |
+
if id_key not in inst:
|
59 |
+
id_key = "query_id"
|
60 |
+
qid2text[inst[id_key]] = inst["text"]
|
61 |
+
return qid2text
|
62 |
+
|
63 |
+
def load_local_qrels(qrels_file):
|
64 |
+
if qrels_file is None:
|
65 |
+
return None
|
66 |
+
qid2did2label = defaultdict(dict)
|
67 |
+
with qrels_file as f:
|
68 |
+
for idx, line in enumerate(f):
|
69 |
+
uses_bytes = not (type(line) == str)
|
70 |
+
if uses_bytes:
|
71 |
+
if idx == 0 and "qid" in line.decode("utf-8") or "query-id" in line.decode("utf-8"):
|
72 |
+
continue
|
73 |
+
cur_line = line.decode("utf-8")
|
74 |
+
else:
|
75 |
+
if idx == 0 and "qid" in line or "query-id" in line:
|
76 |
+
continue
|
77 |
+
cur_line = line
|
78 |
+
try:
|
79 |
+
qid, _, doc_id, label = cur_line.split()
|
80 |
+
except:
|
81 |
+
qid, doc_id, label = cur_line.split()
|
82 |
+
qid2did2label[str(qid)][str(doc_id)] = int(label)
|
83 |
+
|
84 |
+
return qid2did2label
|
85 |
+
|
86 |
+
|
87 |
+
def load_run(f_run):
|
88 |
+
run = pytrec_eval.parse_run(copy.deepcopy(f_run))
|
89 |
+
# convert bytes to strings for keys
|
90 |
+
new_run = defaultdict(dict)
|
91 |
+
for key, sub_dict in run.items():
|
92 |
+
new_run[key.decode("utf-8")] = {k.decode("utf-8"): v for k, v in sub_dict.items()}
|
93 |
+
|
94 |
+
run_pandas = pd.read_csv(f_run, header=None, index_col=None, sep="\t")
|
95 |
+
run_pandas.columns = ["qid", "generic", "doc_id", "rank", "score", "model"]
|
96 |
+
run_pandas.doc_id = run_pandas.doc_id.astype(str)
|
97 |
+
run_pandas.qid = run_pandas.qid.astype(str)
|
98 |
+
run_pandas["rank"] = run_pandas["rank"].astype(int)
|
99 |
+
run_pandas.score = run_pandas.score.astype(float)
|
100 |
+
# if run_1_alt is not None:
|
101 |
+
# run_1_alt, run_1_alt_sub = load_jsonl(run_1_alt)
|
102 |
+
return new_run, run_pandas
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def load_jsonl(f):
|
107 |
+
did2text = defaultdict(list)
|
108 |
+
sub_did2text = {}
|
109 |
+
|
110 |
+
for idx, line in enumerate(f):
|
111 |
+
inst = json.loads(line)
|
112 |
+
if "question" in inst:
|
113 |
+
docid = inst["metadata"][0]["passage_id"] if "doc_id" not in inst else inst["doc_id"]
|
114 |
+
did2text[docid].append(inst["question"])
|
115 |
+
elif "text" in inst:
|
116 |
+
docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
|
117 |
+
did2text[docid].append(inst["text"])
|
118 |
+
sub_did2text[inst["did"]] = inst["text"]
|
119 |
+
elif "query" in inst:
|
120 |
+
docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
|
121 |
+
did2text[docid].append(inst["query"])
|
122 |
+
else:
|
123 |
+
breakpoint()
|
124 |
+
raise NotImplementedError("Need to handle this case")
|
125 |
+
|
126 |
+
return did2text, sub_did2text
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
def get_beir(dataset: str):
|
131 |
+
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
|
132 |
+
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
|
133 |
+
data_path = util.download_and_unzip(url, out_dir)
|
134 |
+
return GenericDataLoader(data_folder=data_path).load(split="test")
|
135 |
+
|
136 |
+
|
137 |
+
def get_ir_datasets(dataset_name: str):
|
138 |
+
dataset = ir_datasets.load(dataset_name)
|
139 |
+
queries = {}
|
140 |
+
for qid, query in dataset.queries_iter():
|
141 |
+
queries[qid] = query
|
142 |
+
# corpus = {}
|
143 |
+
# for doc in dataset.docs_iter():
|
144 |
+
# return corpus, queries, qrels
|
145 |
+
return dataset.doc_store(), queries, dataset.qrels_dict()
|
146 |
+
|
147 |
+
|
148 |
+
def get_dataset(dataset_name: str):
|
149 |
+
if dataset_name == "":
|
150 |
+
return {}, {}, {}
|
151 |
+
|
152 |
+
if dataset_name in BEIR:
|
153 |
+
return get_beir(dataset_name)
|
154 |
+
elif dataset_name in IR_DATASETS:
|
155 |
+
return get_ir_datasets(dataset_name)
|
156 |
+
elif dataset_name in LOCAL_DATASETS:
|
157 |
+
base_path = f"local_datasets/{dataset_name}"
|
158 |
+
corpus_file = open(f"{base_path}/corpus.jsonl", "r")
|
159 |
+
queries_file = open(f"{base_path}/queries.jsonl", "r")
|
160 |
+
qrels_file = open(f"{base_path}/qrels/test.tsv", "r")
|
161 |
+
return load_local_corpus(corpus_file), load_local_queries(queries_file), load_local_qrels(qrels_file)
|
162 |
+
else:
|
163 |
+
raise NotImplementedError("Dataset not implemented")
|
local_datasets/codesearch_py/corpus.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87ef61791e9aa9a9833e59e81756d41beaca8e4cd3efad2bb8940e5876f69008
|
3 |
+
size 384365716
|
local_datasets/codesearch_py/qrels/test.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d172966a5e2dcc39491d446ca75ed730f7309d09701c131add14eb62b45c2114
|
3 |
+
size 79309
|
local_datasets/codesearch_py/qrels/test.tsv.tmp
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef54b582e47e48fdd094a3da00644bcf4af684b709be3f4f72f4de23c783ea50
|
3 |
+
size 79283
|
local_datasets/codesearch_py/qrels/test.tsv.tmp.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efda84b6d2b19a4bbd33ecd89616c88b63f4d585f7cb5ea10cc12372592306a3
|
3 |
+
size 81283
|
local_datasets/codesearch_py/qrels/test.tsv.tmp.2.filtered
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea798baa1ab23010a7769e60ba06e388d2b421cc2a9987b13900743df122a7c2
|
3 |
+
size 24193
|
local_datasets/codesearch_py/queries.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41e3f41fad388f4f612630bdb8ccb23b319b24a0b859db226a381b6f68b1771c
|
3 |
+
size 199567
|
local_datasets/gooaq_technical/corpus.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31282e5019461a6cd9d88a9e47fe6743d6962b3aeb81f5f5f78fa72eb52ff46b
|
3 |
+
size 1399723
|
local_datasets/gooaq_technical/qrels/test.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b56de4bfec42225780cda2fc28fd7e0ee433f313208ab210de5bcf6281757ee
|
3 |
+
size 49675
|
local_datasets/gooaq_technical/qrels/test.tsv.tmp
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49982dbf8d1d182a75935718cb183b91d29e3ad4db1892723371c7d762955cbc
|
3 |
+
size 49649
|
local_datasets/gooaq_technical/qrels/test.tsv.tmp.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f0c2a26846e0456ddd24cd6d315ae516af28504e6b2961d00e0da0ff821f648
|
3 |
+
size 51649
|
local_datasets/gooaq_technical/qrels/test.tsv.tmp.2.filtered
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e681ddae1619d30ce425fdb01ca4ceb10f493b079369ac0e555b1338cd3914e1
|
3 |
+
size 15158
|
local_datasets/gooaq_technical/queries.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25df519a5e39f0c91f6f7c5bdb74601cbfffbadd3cd1a998a8a5a48740b885be
|
3 |
+
size 110860
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
sudo apt install default-jre
|
requirements.txt
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
-
beir
|
2 |
-
pandas
|
3 |
-
pytrec_eval
|
4 |
-
streamlit
|
|
|
|
|
|
|
|
|
|
1 |
+
beir==1.0.1
|
2 |
+
pandas==2.0.3
|
3 |
+
pytrec_eval==0.5
|
4 |
+
streamlit==1.24.1
|
5 |
+
ir_datasets==0.5.5
|
6 |
+
pyserini==0.21.1
|
7 |
+
torch==2.0.1
|
8 |
+
plotly==5.5.15
|
test.tst
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"base",
|
2 |
+
"antique",
|
3 |
+
"aol_ia",
|
4 |
+
"aquaint",
|
5 |
+
"argsme",
|
6 |
+
"beir",
|
7 |
+
"c4
|
8 |
+
"car",
|
9 |
+
"clinicaltrials",
|
10 |
+
"clirmatrix",
|
11 |
+
"clueweb09",
|
12 |
+
"clueweb12",
|
13 |
+
"codec",
|
14 |
+
"cord19",
|
15 |
+
"cranfield",
|
16 |
+
"disks45",
|
17 |
+
"dpr_w100",
|
18 |
+
"codesearchnet",
|
19 |
+
"gov",
|
20 |
+
"gov2",
|
21 |
+
"highwire",
|
22 |
+
"istella22",
|
23 |
+
"kilt",
|
24 |
+
"lotte",
|
25 |
+
"medline",
|
26 |
+
"mmarco",
|
27 |
+
"mr_tydi",
|
28 |
+
"msmarco_document",
|
29 |
+
"msmarco_document_v2",
|
30 |
+
"msmarco_passage",
|
31 |
+
"msmarco_passage_v2",
|
32 |
+
"msmarco_qna",
|
33 |
+
"neumarco",
|
34 |
+
"nfcorpus",
|
35 |
+
"natural_questions",
|
36 |
+
"nyt",
|
37 |
+
"pmc",
|
38 |
+
"touche_image",
|
39 |
+
"touche",
|
40 |
+
"trec_arabic",
|
41 |
+
"trec_mandarin",
|
42 |
+
"trec_spanish",
|
43 |
+
"trec_robust04",
|
44 |
+
"trec_tot",
|
45 |
+
"tripclick",
|
46 |
+
"tweets2013_ia",
|
47 |
+
"vaswani",
|
48 |
+
"wapo",
|
49 |
+
"wikiclir",
|
50 |
+
"wikir",
|
51 |
+
"trec_fair",
|
52 |
+
"trec_cast",
|
53 |
+
"hc4",
|
54 |
+
"neuclir",
|
55 |
+
"sara",
|