File size: 379 Bytes
7043415
 
 
 
 
 
 
 
 
 
 
aa44b66
7043415
1cc5925
 
762f224
5916e30
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import gradio as gr

from transformers import pipeline

pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")

def predict(text):
  return pipe(text)[0]["translation_text"]

iface = gr.Interface(
  fn=predict, 
  inputs='text',
  outputs='text',
  examples=[["Hello! My name is Omar"]],
  theme="default",
  css=".footer{display:none !important}", 
)

iface.launch()