#!/usr/bin/env python # coding: utf-8 # In[2]: # In[3]: import gradio as gr import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) # Modify fc1 to match the size in the saved checkpoint self.fc1 = nn.Linear(400, 120) # Modify fc2 to match the size in the saved checkpoint self.fc2 = nn.Linear(120, 84) # Modify fc3 to match the size in the saved checkpoint self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(x.shape[0], -1) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # Load the trained model model = Net() model.load_state_dict(torch.load("cifar_net.pth")) model.eval() # Define the transformation to be applied to input images preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Resize((32, 32)), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # Define the CIFAR-10 class names classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Define a function to make predictions on input images def classify_image(image): img_tensor = preprocess(image) img_tensor = img_tensor.unsqueeze(0) output = model(img_tensor) _, predicted = torch.max(output, dim=1) return classes[predicted[0]] # Return as a list # Create Gradio interface iface = gr.Interface(fn=classify_image, inputs="image", outputs="text") # Launch the interface iface.launch() # In[ ]: