import gradio as gr from PIL import Image, ImageDraw, ImageFont import random import pandas as pd import numpy as np from datasets import concatenate_datasets from operator import itemgetter import collections # download datasets from datasets import load_dataset dataset_small = load_dataset("pierreguillou/DocLayNet-small") dataset_base = load_dataset("pierreguillou/DocLayNet-base") id2label = {idx:label for idx,label in enumerate(dataset_small["train"].features["categories"].feature.names)} label2id = {label:idx for idx,label in id2label.items()} labels = [label for idx, label in id2label.items()] # need to change the coordinates format def convert_box(box): x, y, w, h = tuple(box) # the row comes in (left, top, width, height) format actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box return actual_box # get back original size def original_box(box, original_width, original_height, coco_width, coco_height): return [ int(original_width * (box[0] / coco_width)), int(original_height * (box[1] / coco_height)), int(original_width * (box[2] / coco_width)), int(original_height* (box[3] / coco_height)), ] # function to sort bounding boxes def get_sorted_boxes(bboxes): # sort by y from page top to bottom bboxes = sorted(bboxes, key=itemgetter(1), reverse=False) y_list = [bbox[1] for bbox in bboxes] # sort by x from page left to right when boxes with same y if len(list(set(y_list))) != len(y_list): y_list_duplicates_indexes = dict() y_list_duplicates = [item for item, count in collections.Counter(y_list).items() if count > 1] for item in y_list_duplicates: y_list_duplicates_indexes[item] = [i for i, e in enumerate(y_list) if e == item] bbox_list_y_duplicates = sorted(np.array(bboxes)[y_list_duplicates_indexes[item]].tolist(), key=itemgetter(0), reverse=False) np_array_bboxes = np.array(bboxes) np_array_bboxes[y_list_duplicates_indexes[item]] = np.array(bbox_list_y_duplicates) bboxes = np_array_bboxes.tolist() return bboxes # categories colors label2color = { 'Caption': 'brown', 'Footnote': 'orange', 'Formula': 'gray', 'List-item': 'yellow', 'Page-footer': 'red', 'Page-header': 'red', 'Picture': 'violet', 'Section-header': 'orange', 'Table': 'green', 'Text': 'blue', 'Title': 'pink' } # image witout content examples_dir = 'samples/' images_wo_content = examples_dir + "wo_content.png" df_paragraphs_wo_content, df_lines_wo_content = pd.DataFrame(), pd.DataFrame() df_paragraphs_wo_content["paragraphs"] = [0] df_paragraphs_wo_content["categories"] = ["no content"] df_paragraphs_wo_content["texts"] = ["no content"] df_paragraphs_wo_content["bounding boxes"] = ["no content"] df_lines_wo_content["lines"] = [0] df_lines_wo_content["categories"] = ["no content"] df_lines_wo_content["texts"] = ["no content"] df_lines_wo_content["bounding boxes"] = ["no content"] # lists font = ImageFont.load_default() dataset_names = ["small", "base"] splits = ["all", "train", "validation", "test"] domains = ["all", "Financial Reports", "Manuals", "Scientific Articles", "Laws & Regulations", "Patents", "Government Tenders"] domains_names = [domain_name.lower().replace(" ", "_").replace("&", "and") for domain_name in domains] categories = labels + ["all"] # function to get a rendom image and all data from DocLayNet def generate_annotated_image(dataset_name, split, domain, category): # error message msg_error = "" # get dataset if dataset_name == "small": example = dataset_small else: example = dataset_base # get split if split == "all": example = concatenate_datasets([example["train"], example["validation"], example["test"]]) else: example = example[split] # get domain domain_name = domains_names[domains.index(domain)] if domain_name != "all": example = example.filter(lambda example: example["doc_category"] == domain_name) if len(example) == 0: msg_error = f'There is no image with at least one labeled bounding box that matches your settings (dataset: "DocLayNet {dataset_name}" / domain: "{domain}" / split: "{split}").' example = dict() # get category idx_list = list() if category != "all": for idx, categories_list in enumerate(example["categories"]): if int(label2id[category]) in categories_list: idx_list.append(idx) if len(idx_list) > 0: example = example.select(idx_list) else: msg_error = f'There is no image with at least one labeled bounding box that matches your settings (dataset: "DocLayNet {dataset_name}" / split: "{split}" / domain: "{domain}" / category: "{category}").' example = dict() if len(msg_error) > 0: # save image files Image.open(images_wo_content).save("wo_content.png") # save csv files df_paragraphs_wo_content.to_csv("paragraphs_wo_content.csv", encoding="utf-8", index=False) df_lines_wo_content.to_csv("lines_wo_content.csv", encoding="utf-8", index=False) return msg_error, "wo_content.png", images_wo_content, images_wo_content, "wo_content.png", "wo_content.png", df_paragraphs_wo_content, df_lines_wo_content, gr.File.update(value="paragraphs_wo_content.csv", visible=False), gr.File.update(value="lines_wo_content.csv", visible=False) else: # get random image & PDF data index = random.randint(0, len(example)) image = example[index]["image"] # original image coco_width, coco_height = example[index]["coco_width"], example[index]["coco_height"] original_width, original_height = example[index]["original_width"], example[index]["original_height"] original_filename = example[index]["original_filename"] page_no = example[index]["page_no"] num_pages = example[index]["num_pages"] # resize image to original image = image.resize((original_width, original_height)) # get image of PDF without bounding boxes img_file = original_filename.replace(".pdf", ".png") image.save(img_file) # get corresponding annotations texts = example[index]["texts"] bboxes_block = example[index]["bboxes_block"] bboxes_line = example[index]["bboxes_line"] categories = example[index]["categories"] domain = example[index]["doc_category"] # convert boxes to original original_bboxes_block = [original_box(convert_box(box), original_width, original_height, coco_width, coco_height) for box in bboxes_block] original_bboxes_line = [original_box(convert_box(box), original_width, original_height, coco_width, coco_height) for box in bboxes_line] original_bboxes = [original_bboxes_block, original_bboxes_line] ##### block boxes ##### # get list of unique block boxes original_blocks = dict() original_bboxes_block_list = list() original_bbox_block_prec = list() for count_block, original_bbox_block in enumerate(original_bboxes_block): if original_bbox_block != original_bbox_block_prec: original_bbox_block_indexes = [i for i, original_bbox in enumerate(original_bboxes_block) if original_bbox == original_bbox_block] original_blocks[count_block] = original_bbox_block_indexes original_bboxes_block_list.append(original_bbox_block) original_bbox_block_prec = original_bbox_block # get list of categories and texts by unique block boxes category_block_list, text_block_list = list(), list() for original_bbox_block in original_bboxes_block_list: count_block = original_bboxes_block.index(original_bbox_block) original_bbox_block_indexes = original_blocks[count_block] category_block = categories[original_bbox_block_indexes[0]] category_block_list.append(category_block) if id2label[category_block] == "Text" or id2label[category_block] == "Caption" or id2label[category_block] == "Footnote": text_block = ' '.join(np.array(texts)[original_bbox_block_indexes].tolist()) elif id2label[category_block] == "Section-header" or id2label[category_block] == "Title" or id2label[category_block] == "Picture" or id2label[category_block] == "Formula" or id2label[category_block] == "List-item" or id2label[category_block] == "Table" or id2label[category_block] == "Page-header" or id2label[category_block] == "Page-footer": text_block = '\n'.join(np.array(texts)[original_bbox_block_indexes].tolist()) text_block_list.append(text_block) # sort data from y = 0 to end of page (and after, x=0 to end of page when necessary) sorted_original_bboxes_block_list = get_sorted_boxes(original_bboxes_block_list) sorted_original_bboxes_block_list_indexes = [original_bboxes_block_list.index(item) for item in sorted_original_bboxes_block_list] sorted_category_block_list = np.array(category_block_list)[sorted_original_bboxes_block_list_indexes].tolist() sorted_text_block_list = np.array(text_block_list)[sorted_original_bboxes_block_list_indexes].tolist() ##### line boxes #### # sort data from y = 0 to end of page (and after, x=0 to end of page when necessary) original_bboxes_line_list = original_bboxes_line category_line_list = categories text_line_list = texts sorted_original_bboxes_line_list = get_sorted_boxes(original_bboxes_line_list) sorted_original_bboxes_line_list_indexes = [original_bboxes_line_list.index(item) for item in sorted_original_bboxes_line_list] sorted_category_line_list = np.array(category_line_list)[sorted_original_bboxes_line_list_indexes].tolist() sorted_text_line_list = np.array(text_line_list)[sorted_original_bboxes_line_list_indexes].tolist() # setup images & PDF data columns = 2 images = [image.copy(), image.copy()] num_imgs = len(images) imgs, df_paragraphs, df_lines = dict(), pd.DataFrame(), pd.DataFrame() for i, img in enumerate(images): draw = ImageDraw.Draw(img) for box, label_idx, text in zip(original_bboxes[i], categories, texts): label = id2label[label_idx] color = label2color[label] draw.rectangle(box, outline=color) text = text.encode('latin-1', 'replace').decode('latin-1') # https://stackoverflow.com/questions/56761449/unicodeencodeerror-latin-1-codec-cant-encode-character-u2013-writing-to draw.text((box[0] + 10, box[1] - 10), text=label, fill=color, font=font) if i == 0: imgs["paragraphs"] = img # save img_paragraphs = "img_paragraphs_" + original_filename.replace(".pdf", ".png") img.save(img_paragraphs) df_paragraphs["paragraphs"] = list(range(len(sorted_original_bboxes_block_list))) df_paragraphs["categories"] = [id2label[label_idx] for label_idx in sorted_category_block_list] df_paragraphs["texts"] = sorted_text_block_list df_paragraphs["bounding boxes"] = [str(bbox) for bbox in sorted_original_bboxes_block_list] # save csv_paragraphs = "csv_paragraphs_" + original_filename.replace(".pdf", ".csv") df_paragraphs.to_csv(csv_paragraphs, encoding="utf-8", index=False) else: imgs["lines"] = img # save img_lines = "img_lines_" + original_filename.replace(".pdf", ".png") img.save(img_lines) df_lines["lines"] = list(range(len(sorted_original_bboxes_line_list))) df_lines["categories"] = [id2label[label_idx] for label_idx in sorted_category_line_list] df_lines["texts"] = sorted_text_line_list df_lines["bounding boxes"] = [str(bbox) for bbox in sorted_original_bboxes_line_list] # save csv_lines = "csv_lines_" + original_filename.replace(".pdf", ".csv") df_lines.to_csv(csv_lines, encoding="utf-8", index=False) msg = f'The page {page_no} of the PDF "{original_filename}" (domain: "{domain}") matches your settings.' return msg, img_file, imgs["paragraphs"], imgs["lines"], img_paragraphs, img_lines, df_paragraphs, df_lines, gr.File.update(value=csv_paragraphs, visible=True), gr.File.update(value=csv_lines, visible=True) # gradio APP with gr.Blocks(title="DocLayNet image viewer", css=".gradio-container") as demo: gr.HTML("""

DocLayNet image viewer

(01/29/2023) This APP is an image viewer of the DocLayNet dataset and a data extraction tool.

It uses the datasets DocLayNet small and DocLayNet base (you can also run this APP in Google Colab by running this notebook).

Make your settings and the output will show 2 images of a randomly selected PDF with labeled bounding boxes, one of paragraphs and the other of lines, and their corresponding tables of texts with their labels.

For example, if you select the domain "laws_and_regulations" and the category "Caption", you will get a random PDF that corresponds to these settings (ie, it will have at least one bounding box labeled with "Caption" in the PDF).

WARNING: if the app crashes or runs without providing a result, refresh the page (DocLayNet image viewer) and run a search again. If the same problem occurs again, prefer the DocLayNet small. Thanks.

More information about the DocLayNet datasets and this APP in the following blog post: (01/27/2023) Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)

""") with gr.Row(): with gr.Column(): dataset_name_gr = gr.Radio(dataset_names, value="small", label="DocLayNet dataset") with gr.Column(): split_gr = gr.Dropdown(splits, value="all", label="Split") with gr.Column(): domain_gr = gr.Dropdown(domains, value="all", label="Domain") with gr.Column(): category_gr = gr.Dropdown(categories, value="all", label="Category") btn = gr.Button("Display labeled PDF image & data") with gr.Row(): with gr.Column(): output_msg = gr.Textbox(label="Output message") with gr.Column(): img_file = gr.File(visible=True, label="Image file of the PDF") with gr.Row(): with gr.Column(): img_paragraphs_file = gr.File(visible=True, label="Image file (labeled paragraphs)") img_paragraphs = gr.Image(type="pil", label="Bounding boxes of labeled paragraphs", visible=True) with gr.Column(): img_lines_file = gr.File(visible=True, label="Image file (labeled lines)") img_lines = gr.Image(type="pil", label="Bounding boxes of labeled lines", visible=True) with gr.Row(): with gr.Column(): with gr.Row(): csv_paragraphs = gr.File(visible=False, label="CSV file (paragraphs)") with gr.Row(): df_paragraphs = gr.Dataframe( headers=["paragraphs", "categories", "texts", "bounding boxes"], datatype=["number", "str", "str", "str"], col_count=(4, "fixed"), visible=True, label="Paragraphs data", type="pandas", wrap=True ) with gr.Column(): with gr.Row(): csv_lines = gr.File(visible=False, label="CSV file (lines)") with gr.Row(): df_lines = gr.Dataframe( headers=["lines", "categories", "texts", "bounding boxes"], datatype=["number", "str", "str", "str"], col_count=(4, "fixed"), visible=True, label="Lines data", type="pandas", wrap=True ) btn.click(generate_annotated_image, inputs=[dataset_name_gr, split_gr, domain_gr, category_gr], outputs=[output_msg, img_file, img_paragraphs, img_lines, img_paragraphs_file, img_lines_file, df_paragraphs, df_lines, csv_paragraphs, csv_lines]) gr.Markdown("## Example") gr.Examples( [["small", "all", "all", "all"]], [dataset_name_gr, split_gr, domain_gr, category_gr], [output_msg, img_file, img_paragraphs, img_lines, img_paragraphs_file, img_lines_file, df_paragraphs, df_lines, csv_paragraphs, csv_lines], fn=generate_annotated_image, cache_examples=True, ) demo.launch()