File size: 5,123 Bytes
c28c93a b4d283f 7e27e2f 8049894 7e27e2f 8049894 f860236 c28c93a f860236 7e27e2f b4d283f c28c93a 7e27e2f b4d283f 7e27e2f f191a3e 7e27e2f b4d283f c28c93a 7e27e2f f191a3e 7e27e2f b4d283f 41b224c c28c93a 7e27e2f 9b8a77d b4d283f 7e27e2f b4d283f c28c93a b4d283f d872a02 8049894 d872a02 f191a3e 7e27e2f 3888af3 7e27e2f 3888af3 7e27e2f b36a3f3 7e27e2f f191a3e b4d283f f191a3e 5f76c1a f191a3e b4d283f 7e27e2f f191a3e 7e27e2f b4d283f f191a3e 7e27e2f f191a3e b4d283f 7e27e2f ce0d80f b4d283f ce0d80f bcbb85b 8049894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
from functools import lru_cache
import duckdb
import gradio as gr
import polars as pl
from datasets import load_dataset
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from sentence_transformers import SentenceTransformer
global df
# Load the static embeddings model from HuggingFace hub
model_name = "sentence-transformers/static-retrieval-mrl-en-v1"
model = SentenceTransformer(
model_name,
device="cpu",
tokenizer_kwargs={"model_max_length": 512}, # arbitrary for this model, here to keep things fast
)
def get_iframe(hub_repo_id):
if not hub_repo_id:
raise ValueError("Hub repo id is required")
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
iframe = f"""
<iframe
src="{url}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return iframe
def load_dataset_from_hub(hub_repo_id: str):
gr.Info(message="Loading dataset...")
ds = load_dataset(hub_repo_id, num_proc=os.cpu_count())
def get_columns(hub_repo_id: str, split: str):
ds = load_dataset(hub_repo_id)
ds_split = ds[split]
return gr.Dropdown(
choices=ds_split.column_names,
value=ds_split.column_names[0],
label="Select a column",
visible=True,
)
def get_splits(hub_repo_id: str):
ds = load_dataset(hub_repo_id, num_proc=os.cpu_count())
splits = list(ds.keys())
return gr.Dropdown(
choices=splits, value=splits[0], label="Select a split", visible=True
)
@lru_cache
def vectorize_dataset(hub_repo_id: str, split: str, column: str):
gr.Info("Vectorizing dataset...")
ds = load_dataset(hub_repo_id, num_proc=os.cpu_count())
df = ds[split].to_polars()
embeddings = model.encode(df[column].cast(str).to_list(), show_progress_bar=True, batch_size=128)
return embeddings
def run_query(hub_repo_id: str, query: str, split: str, column: str):
embeddings = vectorize_dataset(hub_repo_id, split, column)
ds = load_dataset(hub_repo_id, num_proc=os.cpu_count())
df = ds[split].to_polars()
df = df.with_columns(pl.Series(embeddings).alias("embeddings"))
try:
vector = model.encode(query)
df_results = duckdb.sql(
query=f"""
SELECT *
FROM df
ORDER BY array_cosine_distance(embeddings, {vector.tolist()}::FLOAT[1024])
LIMIT 5
"""
).to_df()
return gr.Dataframe(df_results, visible=True)
except Exception as e:
raise gr.Error(f"Error running query: {e}")
def hide_components():
return [
gr.Dropdown(visible=False),
gr.Dropdown(visible=False),
gr.Textbox(visible=False),
gr.Button(visible=False),
gr.Dataframe(visible=False),
]
def partial_hide_components():
return [
gr.Textbox(visible=False),
gr.Button(visible=False),
gr.Dataframe(visible=False),
]
def show_components():
return [
gr.Textbox(visible=True, label="Query"),
gr.Button(visible=True, value="Search"),
]
with gr.Blocks() as demo:
gr.HTML(
f"""
<h1>Vector Search any Hugging Face Dataset</h1>
<p>
This app allows you to vector search any Hugging Face dataset using
<a href="https://hf.co/{model_name}" target="_blank">{model_name}</a>.
Select a relevant split & column name, then search!
</p>
"""
)
with gr.Row():
with gr.Column():
search_in = HuggingfaceHubSearch(
label="Search Huggingface Hub",
placeholder="Search for datasets on Huggingface",
search_type="dataset",
sumbit_on_select=True,
)
with gr.Row():
search_out = gr.HTML(label="Search Results")
with gr.Row():
split_dropdown = gr.Dropdown(label="Select a split", visible=False)
column_dropdown = gr.Dropdown(label="Select a column", visible=False)
with gr.Row():
query_input = gr.Textbox(label="Query", visible=False)
btn_run = gr.Button("Search", visible=False)
results_output = gr.Dataframe(label="Results", visible=False)
search_in.submit(get_iframe, inputs=search_in, outputs=search_out).then(
fn=load_dataset_from_hub,
inputs=search_in,
show_progress=True,
).then(
fn=hide_components,
outputs=[split_dropdown, column_dropdown, query_input, btn_run, results_output],
).then(fn=get_splits, inputs=search_in, outputs=split_dropdown).then(
fn=get_columns, inputs=[search_in, split_dropdown], outputs=column_dropdown
)
split_dropdown.change(
fn=get_columns, inputs=[search_in, split_dropdown], outputs=column_dropdown
)
column_dropdown.change(
fn=partial_hide_components,
outputs=[query_input, btn_run, results_output],
).then(fn=show_components, outputs=[query_input, btn_run])
btn_run.click(
fn=run_query,
inputs=[search_in, query_input, split_dropdown, column_dropdown],
outputs=results_output,
)
demo.launch() |