Spaces:
Running
Running
File size: 8,598 Bytes
5d42805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""
Contains Utility functions for LLM and Database module. Along with some other misllaneous functions.
"""
from turtle import clear
from pymupdf import pymupdf
#from docx import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
#import tiktoken
import base64
import hashlib
from typing import List
from openai import OpenAI
#from dotenv import load_dotenv
import os
import hashlib
from datetime import datetime
from typing import List, Optional, Dict, Any, Tuple
def generate_file_id(file_bytes: bytes) -> str:
"""Generate a 4-character unique file ID for given file."""
hash_obj = hashlib.sha256()
hash_obj.update(file_bytes[:4096]) # Still hash the first 4096 bytes
# Take first 2 bytes (16 bits) and convert to base36 (alphanumeric)
file_id = hex(int.from_bytes(hash_obj.digest()[:2], 'big'))[2:].zfill(4)
return file_id
def process_pdf_to_chunks(
pdf_content: bytes,
file_name: str,
chunk_size: int = 512,
chunk_overlap: int = 20
) -> Tuple[List[Dict[str, Any]], str]:
"""
Process PDF content into chunks with column layout detection and proper image handling
"""
doc = pymupdf.open(stream=pdf_content, filetype="pdf")
document_text = ""
all_images = []
image_positions = []
char_to_page_map = []
layout_info = {}
doc_id = generate_file_id(pdf_content)
def detect_columns(blocks):
"""Detect if page has multiple columns based on text block positions"""
if not blocks:
return 1
x_positions = [block[0] for block in blocks]
x_positions.sort()
if len(x_positions) > 1:
gaps = [x_positions[i+1] - x_positions[i] for i in range(len(x_positions)-1)]
significant_gaps = [gap for gap in gaps if gap > page.rect.width * 0.15]
return len(significant_gaps) + 1
return 1
def sort_blocks_by_position(blocks, num_columns):
"""Sort blocks by column and vertical position"""
if num_columns == 1:
return sorted(blocks, key=lambda b: b[0][1]) # b[0] is the bbox tuple, b[0][1] is y coordinate
page_width = page.rect.width
column_width = page_width / num_columns
def get_column(block):
bbox = block[0] # Get the bounding box tuple
x_coord = bbox[0] # Get the x coordinate (first element)
return int(x_coord // column_width)
return sorted(blocks, key=lambda b: (get_column(b), b[0][1]))
# Process each page
for page_num, page in enumerate(doc, 1):
blocks = page.get_text_blocks()
images = page.get_images()
# Detect layout
num_columns = detect_columns(blocks)
layout_info[page_num] = {
"columns": num_columns,
"width": page.rect.width,
"height": page.rect.height
}
# Create elements list with both text and images
elements = [(block[:4], block[4], "text") for block in blocks]
# Add images to elements
for img in images:
try:
img_rects = page.get_image_rects(img[0])
if img_rects and len(img_rects) > 0:
img_bbox = img_rects[0]
if img_bbox:
img_data = (img_bbox, img[0], "image")
elements.append(img_data)
except Exception as e:
print(f"Error processing image: {e}")
continue
# Sort elements by position
sorted_elements = sort_blocks_by_position(elements, num_columns)
# Process elements in order
page_text = ""
for element in sorted_elements:
if element[2] == "text":
text_content = element[1]
page_text += text_content
char_to_page_map.extend([page_num] * len(text_content))
else:
xref = element[1]
base_image = doc.extract_image(xref)
image_bytes = base_image["image"]
# Convert image bytes to base64
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
all_images.append(image_base64) # Store base64 encoded image
image_marker = f"\n<img_{len(all_images)-1}>\n"
image_positions.append((len(all_images)-1, len(document_text) + len(page_text)))
page_text += image_marker
char_to_page_map.extend([page_num] * len(image_marker))
document_text += page_text
# Create chunks
splitter = RecursiveCharacterTextSplitter(
#separators=["\n\n", "\n", " ", ""],
#keep_separator=True
).from_tiktoken_encoder(
encoding_name="cl100k_base",
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
text_chunks = splitter.split_text(document_text)
# Process chunks with metadata
processed_chunks = []
for chunk_idx, chunk in enumerate(text_chunks):
chunk_start = document_text.find(chunk)
chunk_end = chunk_start + len(chunk)
# Get page range and layout info
chunk_pages = sorted(set(char_to_page_map[chunk_start:chunk_end]))
chunk_layouts = {page: layout_info[page] for page in chunk_pages}
# Get images for this chunk
chunk_images = []
for img_idx, img_pos in image_positions:
if chunk_start <= img_pos <= chunk_end:
chunk_images.append(all_images[img_idx]) # Already base64 encoded
# Clean the chunk text
#cleaned_chunk = clean_text_for_llm(chunk)
chunk_dict = {
"text": chunk,
"metadata": {
"created_date": datetime.now().isoformat(),
"file_name": file_name,
"images": chunk_images,
"document_id": doc_id,
"location": {
"char_start": chunk_start,
"char_end": chunk_end,
"pages": chunk_pages,
"chunk_index": chunk_idx,
"total_chunks": len(text_chunks),
"layout": chunk_layouts
}
}
}
processed_chunks.append(chunk_dict)
return processed_chunks, doc_id
# import re
# import unicodedata
# from typing import Optional
# # Compile regex patterns once
# HTML_TAG_PATTERN = re.compile(r'<[^>]+>')
# MULTIPLE_NEWLINES = re.compile(r'\n\s*\n')
# MULTIPLE_SPACES = re.compile(r'\s+')
# def clean_text_for_llm(text: Optional[str]) -> str:
# """
# Efficiently clean and normalize text for LLM processing.
# """
# # Early returns
# if not text:
# return ""
# if not isinstance(text, str):
# try:
# text = str(text)
# except Exception:
# return ""
# # Single-pass character filtering
# chars = []
# prev_char = ''
# space_pending = False
# for char in text:
# # Skip null bytes and most control characters
# if char == '\0' or unicodedata.category(char).startswith('C'):
# if char not in '\n\t':
# continue
# # Convert escaped sequences
# if prev_char == '\\':
# if char == 'n':
# chars[-1] = '\n'
# continue
# if char == 't':
# chars[-1] = '\t'
# continue
# # Handle whitespace
# if char.isspace():
# if not space_pending:
# space_pending = True
# continue
# if space_pending:
# chars.append(' ')
# space_pending = False
# chars.append(char)
# prev_char = char
# # Join characters and perform remaining operations
# text = ''.join(chars)
# # Remove HTML tags
# #text = HTML_TAG_PATTERN.sub('', text)
# # Normalize Unicode in a single pass
# text = unicodedata.normalize('NFKC', text)
# # Clean up newlines
# text = MULTIPLE_NEWLINES.sub('\n', text)
# Final trim
# return text.strip() |