|
import gradio as gr |
|
import torch |
|
|
|
from gradio_depth_pred import create_demo as create_depth_pred_demo |
|
from gradio_im_to_3d import create_demo as create_im_to_3d_demo |
|
from gradio_pano_to_3d import create_demo as create_pano_to_3d_demo |
|
|
|
|
|
css = """ |
|
#img-display-container { |
|
max-height: 50vh; |
|
} |
|
#img-display-input { |
|
max-height: 40vh; |
|
} |
|
#img-display-output { |
|
max-height: 40vh; |
|
} |
|
|
|
""" |
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval() |
|
|
|
title = "# ZoeDepth" |
|
description = """Official demo for **ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth**. |
|
|
|
ZoeDepth is a deep learning model for metric depth estimation from a single image. |
|
|
|
Please refer to our [paper](https://arxiv.org/abs/2302.12288) or [github](https://github.com/isl-org/ZoeDepth) for more details.""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
with gr.Tab("Depth Prediction"): |
|
create_depth_pred_demo(model) |
|
with gr.Tab("Image to 3D"): |
|
create_im_to_3d_demo(model) |
|
with gr.Tab("360 Panorama to 3D"): |
|
create_pano_to_3d_demo(model) |
|
|
|
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/shariqfarooq/ZoeDepth?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br> |
|
<p><img src="https://visitor-badge.glitch.me/badge?page_id=shariqfarooq.zoedepth_demo_hf" alt="visitors"></p></center>''') |
|
|
|
if __name__ == '__main__': |
|
demo.queue().launch() |