|
import gradio as gr |
|
from utils import colorize |
|
from PIL import Image |
|
import tempfile |
|
|
|
def predict_depth(model, image): |
|
depth = model.infer_pil(image) |
|
return depth |
|
|
|
def create_demo(model): |
|
gr.Markdown("### Depth Prediction demo") |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input').style(height="auto") |
|
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output') |
|
raw_file = gr.File(label="16-bit raw depth, multiplier:256") |
|
submit = gr.Button("Submit") |
|
|
|
def on_submit(image): |
|
depth = predict_depth(model, image) |
|
colored_depth = colorize(depth, cmap='gray_r') |
|
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) |
|
raw_depth = Image.fromarray((depth*256).astype('uint16')) |
|
raw_depth.save(tmp.name) |
|
return [colored_depth, tmp.name] |
|
|
|
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file]) |
|
examples = gr.Examples(examples=["examples/person_1.jpeg", "examples/person_2.jpeg", "examples/person-leaves.png", "examples/living-room.jpeg"], |
|
inputs=[input_image]) |