import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, TrainerCallback from datasets import load_dataset, Dataset, DatasetDict import os import time # トレーニングの進行状況を格納するグローバル変数 progress_info = { "status": "待機中", "progress": 0, "time_remaining": None } def update_progress(trainer, epoch, step, total_steps, time_remaining): global progress_info progress_info["status"] = f"エポック {epoch + 1} / {trainer.args.num_train_epochs}, ステップ {step + 1} / {total_steps}" progress_info["progress"] = (step + 1) / total_steps progress_info["time_remaining"] = time_remaining def train_and_deploy(write_token, repo_name, license_text): global progress_info progress_info["status"] = "トレーニング開始" progress_info["progress"] = 0 progress_info["time_remaining"] = None # トークンを環境変数に設定 os.environ['HF_WRITE_TOKEN'] = write_token # ライセンスファイルを作成 with open("LICENSE", "w") as f: f.write(license_text) # モデルとトークナイザーの読み込み model_name = "EleutherAI/pythia-14m" # トレーニング対象のモデル model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # FBK-MT/mosel データセットの読み込み dataset = load_dataset("FBK-MT/mosel") # データセットのキーを確認 print(f"Dataset keys: {dataset.keys()}") if "train" not in dataset: raise KeyError("The dataset does not contain a 'train' split.") # testセットが存在しない場合、trainセットを分割してtestセットを作成 if "test" not in dataset: dataset = dataset["train"].train_test_split(test_size=0.1) dataset = DatasetDict({ "train": dataset["train"], "test": dataset["test"] }) # データセットの最初のエントリのキーを確認 print(f"Sample keys in 'train' split: {dataset['train'][0].keys()}") # データセットのトークン化 def tokenize_function(examples): try: texts = examples['text'] return tokenizer(texts, padding="max_length", truncation=True, max_length=128) except KeyError as e: print(f"KeyError: {e}") print(f"Available keys: {examples.keys()}") raise tokenized_datasets = dataset.map(tokenize_function, batched=True) # トレーニング設定 training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, per_device_eval_batch_size=8, evaluation_strategy="epoch", save_strategy="epoch", logging_dir="./logs", logging_steps=10, num_train_epochs=3, # トレーニングエポック数 push_to_hub=True, # Hugging Face Hubにプッシュ hub_token=write_token, hub_model_id=repo_name # ユーザーが入力したリポジトリ名 ) # Trainerの設定 trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], callbacks=[CustomCallback()] ) # トレーニング実行 start_time = time.time() trainer.train() end_time = time.time() total_time = end_time - start_time progress_info["status"] = f"トレーニング完了(所要時間: {total_time:.2f}秒)" progress_info["progress"] = 1 progress_info["time_remaining"] = 0 # モデルをHugging Face Hubにプッシュ trainer.push_to_hub() return f"モデルが'{repo_name}'リポジトリにデプロイされました!" class CustomCallback(TrainerCallback): def on_train_begin(self, args, state, control, **kwargs): global progress_info progress_info["status"] = "トレーニング開始" progress_info["progress"] = 0 progress_info["time_remaining"] = None def on_step_begin(self, args, state, control, **kwargs): global progress_info total_steps = state.max_steps current_step = state.global_step progress_info["status"] = f"エポック {state.epoch + 1} / {args.num_train_epochs}, ステップ {current_step + 1} / {total_steps}" progress_info["progress"] = (current_step + 1) / total_steps progress_info["time_remaining"] = None def on_step_end(self, args, state, control, **kwargs): global progress_info total_steps = state.max_steps current_step = state.global_step elapsed_time = time.time() - state.log_history[0]["epoch_time"] time_per_step = elapsed_time / (current_step + 1) remaining_steps = total_steps - current_step time_remaining = time_per_step * remaining_steps progress_info["status"] = f"エポック {state.epoch + 1} / {args.num_train_epochs}, ステップ {current_step + 1} / {total_steps}" progress_info["progress"] = (current_step + 1) / total_steps progress_info["time_remaining"] = f"{time_remaining:.2f}秒" # Gradio UI with gr.Blocks() as demo: gr.Markdown("### pythia トレーニングとデプロイ") token_input = gr.Textbox(label="Hugging Face Write Token", placeholder="トークンを入力してください...") repo_input = gr.Textbox(label="リポジトリ名", placeholder="デプロイするリポジトリ名を入力してください...") license_input = gr.Textbox(label="ライセンス", placeholder="ライセンス情報を入力してください...") output = gr.Textbox(label="出力") progress = gr.Progress(track_tqdm=True) status = gr.Textbox(label="ステータス", value="待機中") time_remaining = gr.Textbox(label="残り時間", value="待機中") train_button = gr.Button("デプロイ") def update_ui(): global progress_info status.value = progress_info["status"] progress.update(value=progress_info["progress"]) time_remaining.value = f"{progress_info['time_remaining']}秒" if progress_info['time_remaining'] else "待機中" train_button.click(fn=train_and_deploy, inputs=[token_input, repo_input, license_input], outputs=output).then(fn=update_ui) demo.launch()