samueldomdey commited on
Commit
257616f
·
1 Parent(s): 190fdab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -9
app.py CHANGED
@@ -4,12 +4,6 @@ import numpy as np
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
5
 
6
 
7
- # load tokenizer and model, create trainer
8
- model_name = "j-hartmann/emotion-english-distilroberta-base"
9
- tokenizer = AutoTokenizer.from_pretrained(model_name)
10
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
11
- trainer = Trainer(model=model)
12
-
13
  # summary function - test for single gradio function interfrace
14
  def bulk_function(filename):
15
  # Create class for data preparation
@@ -32,10 +26,26 @@ def bulk_function(filename):
32
  print(filename.name)
33
 
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  # read csv
36
  # even if index given, drop it
37
- df_input = pd.read_csv(filename.name, index_col=False)
38
- print("df_input", df_input)
39
 
40
  # expect csv format to be in:
41
  # 1: ID
@@ -87,7 +97,7 @@ def bulk_function(filename):
87
  surprise.append(round(temp[i][6], 2))
88
 
89
  # define df
90
- df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=[df_input.columns[0], df_input.columns[1],'label','score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
91
  print(df)
92
  # save results to csv
93
  YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file
 
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
5
 
6
 
 
 
 
 
 
 
7
  # summary function - test for single gradio function interfrace
8
  def bulk_function(filename):
9
  # Create class for data preparation
 
26
  print(filename.name)
27
 
28
 
29
+ # check type of input file
30
+ if filename.name.split(".")[1] == "csv":
31
+ print("entered")
32
+ # read file, drop index if exists
33
+ df_input = pd.read_csv(filename.name, index_col=False)
34
+ if df_input.columns[0] == "Unnamed: 0":
35
+ df_input = df_input.drop("Unnamed: 0", axis=1)
36
+ elif filename.name.split(".")[1] == "xlsx":
37
+ df_input = pd.read_excel(filename.name, index_col=False)
38
+ # handle Unnamed
39
+ if df_input.columns[0] == "Unnamed: 0":
40
+ df_input = df_input.drop("Unnamed: 0", axis=1)
41
+ else:
42
+ return
43
+
44
+
45
  # read csv
46
  # even if index given, drop it
47
+ #df_input = pd.read_csv(filename.name, index_col=False)
48
+ #print("df_input", df_input)
49
 
50
  # expect csv format to be in:
51
  # 1: ID
 
97
  surprise.append(round(temp[i][6], 2))
98
 
99
  # define df
100
+ df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=[df_input.columns[0], df_input.columns[1],'label','score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
101
  print(df)
102
  # save results to csv
103
  YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file