Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import random
|
2 |
-
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import spaces
|
@@ -7,6 +9,11 @@ import torch
|
|
7 |
from diffusers import DiffusionPipeline
|
8 |
from PIL import Image
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
12 |
adapter_id = "openfree/claude-monet"
|
@@ -15,10 +22,30 @@ pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16
|
|
15 |
pipeline.load_lora_weights(adapter_id)
|
16 |
pipeline = pipeline.to(device)
|
17 |
|
18 |
-
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
@spaces.GPU(duration=120)
|
24 |
def inference(
|
@@ -45,8 +72,12 @@ def inference(
|
|
45 |
generator=generator,
|
46 |
joint_attention_kwargs={"scale": lora_scale},
|
47 |
).images[0]
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def load_predefined_images():
|
52 |
predefined_images = [
|
@@ -74,84 +105,97 @@ footer {
|
|
74 |
}
|
75 |
"""
|
76 |
|
77 |
-
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css
|
78 |
-
) as demo:
|
79 |
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
|
80 |
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
)
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
lora_scale = gr.Slider(
|
143 |
-
label="LoRA scale",
|
144 |
-
minimum=0.0,
|
145 |
-
maximum=1.0,
|
146 |
-
step=0.1,
|
147 |
-
value=1.0,
|
148 |
-
)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
155 |
|
156 |
gr.on(
|
157 |
triggers=[run_button.click, prompt.submit],
|
@@ -166,17 +210,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css
|
|
166 |
num_inference_steps,
|
167 |
lora_scale,
|
168 |
],
|
169 |
-
outputs=[result, seed],
|
170 |
-
)
|
171 |
-
|
172 |
-
# Add gallery section at the bottom
|
173 |
-
gr.Markdown("### Claude Monet Style Examples")
|
174 |
-
predefined_gallery = gr.Gallery(
|
175 |
-
label="Sample Images",
|
176 |
-
columns=3,
|
177 |
-
rows=2,
|
178 |
-
show_label=False,
|
179 |
-
value=load_predefined_images()
|
180 |
)
|
181 |
|
182 |
demo.queue()
|
|
|
1 |
import random
|
2 |
+
import os
|
3 |
+
import uuid
|
4 |
+
from datetime import datetime
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import spaces
|
|
|
9 |
from diffusers import DiffusionPipeline
|
10 |
from PIL import Image
|
11 |
|
12 |
+
# Create directories if they don't exist
|
13 |
+
SAVE_DIR = "generated_images"
|
14 |
+
if not os.path.exists(SAVE_DIR):
|
15 |
+
os.makedirs(SAVE_DIR)
|
16 |
+
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
19 |
adapter_id = "openfree/claude-monet"
|
|
|
22 |
pipeline.load_lora_weights(adapter_id)
|
23 |
pipeline = pipeline.to(device)
|
24 |
|
|
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 1024
|
27 |
|
28 |
+
def save_generated_image(image):
|
29 |
+
# Generate unique filename with timestamp
|
30 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
31 |
+
unique_id = str(uuid.uuid4())[:8]
|
32 |
+
filename = f"{timestamp}_{unique_id}.png"
|
33 |
+
filepath = os.path.join(SAVE_DIR, filename)
|
34 |
+
|
35 |
+
# Save the image
|
36 |
+
image.save(filepath)
|
37 |
+
return filepath
|
38 |
+
|
39 |
+
def load_generated_images():
|
40 |
+
if not os.path.exists(SAVE_DIR):
|
41 |
+
return []
|
42 |
+
|
43 |
+
# Load all images from the directory
|
44 |
+
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
|
45 |
+
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
|
46 |
+
# Sort by creation time (newest first)
|
47 |
+
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
48 |
+
return image_files
|
49 |
|
50 |
@spaces.GPU(duration=120)
|
51 |
def inference(
|
|
|
72 |
generator=generator,
|
73 |
joint_attention_kwargs={"scale": lora_scale},
|
74 |
).images[0]
|
75 |
+
|
76 |
+
# Save the generated image
|
77 |
+
save_generated_image(image)
|
78 |
+
|
79 |
+
# Return the image, seed, and updated gallery
|
80 |
+
return image, seed, load_generated_images()
|
81 |
|
82 |
def load_predefined_images():
|
83 |
predefined_images = [
|
|
|
105 |
}
|
106 |
"""
|
107 |
|
108 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
|
109 |
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
|
110 |
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
111 |
|
112 |
+
with gr.Tabs() as tabs:
|
113 |
+
with gr.Tab("Generation"):
|
114 |
+
with gr.Column(elem_id="col-container"):
|
115 |
+
with gr.Row():
|
116 |
+
prompt = gr.Text(
|
117 |
+
label="Prompt",
|
118 |
+
show_label=False,
|
119 |
+
max_lines=1,
|
120 |
+
placeholder="Enter your prompt",
|
121 |
+
container=False,
|
122 |
+
)
|
123 |
+
run_button = gr.Button("Run", scale=0)
|
124 |
+
|
125 |
+
result = gr.Image(label="Result", show_label=False)
|
126 |
+
|
127 |
+
with gr.Accordion("Advanced Settings", open=False):
|
128 |
+
seed = gr.Slider(
|
129 |
+
label="Seed",
|
130 |
+
minimum=0,
|
131 |
+
maximum=MAX_SEED,
|
132 |
+
step=1,
|
133 |
+
value=42,
|
134 |
+
)
|
135 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
width = gr.Slider(
|
139 |
+
label="Width",
|
140 |
+
minimum=256,
|
141 |
+
maximum=MAX_IMAGE_SIZE,
|
142 |
+
step=32,
|
143 |
+
value=1024,
|
144 |
+
)
|
145 |
+
height = gr.Slider(
|
146 |
+
label="Height",
|
147 |
+
minimum=256,
|
148 |
+
maximum=MAX_IMAGE_SIZE,
|
149 |
+
step=32,
|
150 |
+
value=768,
|
151 |
+
)
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
guidance_scale = gr.Slider(
|
155 |
+
label="Guidance scale",
|
156 |
+
minimum=0.0,
|
157 |
+
maximum=10.0,
|
158 |
+
step=0.1,
|
159 |
+
value=3.5,
|
160 |
+
)
|
161 |
+
num_inference_steps = gr.Slider(
|
162 |
+
label="Number of inference steps",
|
163 |
+
minimum=1,
|
164 |
+
maximum=50,
|
165 |
+
step=1,
|
166 |
+
value=30,
|
167 |
+
)
|
168 |
+
lora_scale = gr.Slider(
|
169 |
+
label="LoRA scale",
|
170 |
+
minimum=0.0,
|
171 |
+
maximum=1.0,
|
172 |
+
step=0.1,
|
173 |
+
value=1.0,
|
174 |
+
)
|
175 |
+
|
176 |
+
gr.Examples(
|
177 |
+
examples=examples,
|
178 |
+
inputs=[prompt],
|
179 |
+
outputs=[result, seed],
|
180 |
)
|
181 |
|
182 |
+
with gr.Tab("Gallery"):
|
183 |
+
generated_gallery = gr.Gallery(
|
184 |
+
label="Generated Images",
|
185 |
+
columns=6,
|
186 |
+
show_label=False,
|
187 |
+
value=load_generated_images(),
|
188 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
# Add sample gallery section at the bottom
|
191 |
+
gr.Markdown("### Claude Monet Style Examples")
|
192 |
+
predefined_gallery = gr.Gallery(
|
193 |
+
label="Sample Images",
|
194 |
+
columns=3,
|
195 |
+
rows=2,
|
196 |
+
show_label=False,
|
197 |
+
value=load_predefined_images()
|
198 |
+
)
|
199 |
|
200 |
gr.on(
|
201 |
triggers=[run_button.click, prompt.submit],
|
|
|
210 |
num_inference_steps,
|
211 |
lora_scale,
|
212 |
],
|
213 |
+
outputs=[result, seed, generated_gallery],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
|
216 |
demo.queue()
|