Spaces:
Running
on
Zero
Running
on
Zero
jiachenl
commited on
Commit
·
c3f3b0b
1
Parent(s):
547140d
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +8 -0
- README.md +2 -2
- app.py +101 -0
- checkpoints/CuMo-mistral-7b/.gitattributes +4 -0
- checkpoints/CuMo-mistral-7b/config.json +3 -0
- checkpoints/CuMo-mistral-7b/generation_config.json +3 -0
- checkpoints/CuMo-mistral-7b/model-00001-of-00004.safetensors +3 -0
- checkpoints/CuMo-mistral-7b/model-00002-of-00004.safetensors +3 -0
- checkpoints/CuMo-mistral-7b/model-00003-of-00004.safetensors +3 -0
- checkpoints/CuMo-mistral-7b/model-00004-of-00004.safetensors +3 -0
- checkpoints/CuMo-mistral-7b/model.safetensors.index.json +3 -0
- checkpoints/CuMo-mistral-7b/special_tokens_map.json +3 -0
- checkpoints/CuMo-mistral-7b/tokenizer.model +3 -0
- checkpoints/CuMo-mistral-7b/tokenizer_config.json +3 -0
- checkpoints/CuMo-mistral-7b/trainer_state.json +3 -0
- checkpoints/CuMo-mistral-7b/training_args.bin +3 -0
- cumo/__init__.py +4 -0
- cumo/__pycache__/__init__.cpython-310.pyc +0 -0
- cumo/__pycache__/__init__.cpython-39.pyc +0 -0
- cumo/__pycache__/constants.cpython-310.pyc +0 -0
- cumo/__pycache__/constants.cpython-39.pyc +0 -0
- cumo/__pycache__/conversation.cpython-310.pyc +0 -0
- cumo/__pycache__/conversation.cpython-39.pyc +0 -0
- cumo/__pycache__/mm_utils.cpython-310.pyc +0 -0
- cumo/__pycache__/mm_utils.cpython-39.pyc +0 -0
- cumo/__pycache__/utils.cpython-310.pyc +0 -0
- cumo/__pycache__/utils.cpython-39.pyc +0 -0
- cumo/constants.py +31 -0
- cumo/conversation.py +427 -0
- cumo/eval/__pycache__/model_vqa.cpython-310.pyc +0 -0
- cumo/eval/__pycache__/model_vqa_loader.cpython-310.pyc +0 -0
- cumo/eval/calculate_score.py +266 -0
- cumo/eval/eval_gpt_review_bench.py +124 -0
- cumo/eval/eval_pope.py +86 -0
- cumo/eval/eval_science_qa.py +114 -0
- cumo/eval/eval_textvqa.py +65 -0
- cumo/eval/extract_answer.py +252 -0
- cumo/eval/m4c_evaluator.py +334 -0
- cumo/eval/main_eval_only.py +96 -0
- cumo/eval/mmmu_utils/data_utils.py +174 -0
- cumo/eval/mmmu_utils/eval_utils.py +255 -0
- cumo/eval/model_qa.py +64 -0
- cumo/eval/model_vqa.py +102 -0
- cumo/eval/model_vqa_loader.py +166 -0
- cumo/eval/model_vqa_mathvista.py +141 -0
- cumo/eval/model_vqa_mmbench.py +161 -0
- cumo/eval/model_vqa_mmmu.py +165 -0
- cumo/eval/model_vqa_science.py +130 -0
- cumo/eval/summarize_gpt_review.py +58 -0
- cumo/mm_utils.py +265 -0
.gitattributes
CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoints/CuMo-mistral-7b/tokenizer_config.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoints/CuMo-mistral-7b/tokenizer.model filter=lfs diff=lfs merge=lfs -text
|
38 |
+
checkpoints/CuMo-mistral-7b/trainer_state.json filter=lfs diff=lfs merge=lfs -text
|
39 |
+
checkpoints/CuMo-mistral-7b/training_args.bin filter=lfs diff=lfs merge=lfs -text
|
40 |
+
checkpoints/CuMo-mistral-7b/config.json filter=lfs diff=lfs merge=lfs -text
|
41 |
+
checkpoints/CuMo-mistral-7b/generation_config.json filter=lfs diff=lfs merge=lfs -text
|
42 |
+
checkpoints/CuMo-mistral-7b/model.safetensors.index.json filter=lfs diff=lfs merge=lfs -text
|
43 |
+
checkpoints/CuMo-mistral-7b/special_tokens_map.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: CuMo 7b Zero
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: cc-by-nc-4.0
|
|
|
1 |
---
|
2 |
title: CuMo 7b Zero
|
3 |
+
emoji: 🐐
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.16.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: cc-by-nc-4.0
|
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import argparse
|
4 |
+
import time
|
5 |
+
import subprocess
|
6 |
+
import torch
|
7 |
+
import cumo.serve.gradio_web_server as gws
|
8 |
+
|
9 |
+
#os.system("export BUILD_WITH_CUDA=True")
|
10 |
+
#os.system("pip install --upgrade pip")
|
11 |
+
#os.system("pip install flash-attn --no-build-isolation")
|
12 |
+
|
13 |
+
# Execute the pip install command with additional options
|
14 |
+
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'flash-attn', '--no-build-isolation', '-U'])
|
15 |
+
|
16 |
+
def start_controller():
|
17 |
+
print("Starting the controller")
|
18 |
+
controller_command = [
|
19 |
+
sys.executable,
|
20 |
+
"-m",
|
21 |
+
"cumo.serve.controller",
|
22 |
+
"--host",
|
23 |
+
"0.0.0.0",
|
24 |
+
"--port",
|
25 |
+
"10000",
|
26 |
+
]
|
27 |
+
print(controller_command)
|
28 |
+
return subprocess.Popen(controller_command)
|
29 |
+
|
30 |
+
def start_worker(model_path: str, bits=16):
|
31 |
+
print(f"Starting the model worker for the model {model_path}")
|
32 |
+
model_name = model_path.strip("/").split("/")[-1]
|
33 |
+
assert bits in [4, 8, 16], "It can be only loaded with 16-bit, 8-bit, and 4-bit."
|
34 |
+
if bits != 16:
|
35 |
+
model_name += f"-{bits}bit"
|
36 |
+
worker_command = [
|
37 |
+
sys.executable,
|
38 |
+
"-m",
|
39 |
+
"cumo.serve.model_worker",
|
40 |
+
"--host",
|
41 |
+
"0.0.0.0",
|
42 |
+
"--controller",
|
43 |
+
"http://localhost:10000",
|
44 |
+
"--model-path",
|
45 |
+
model_path,
|
46 |
+
"--model-name",
|
47 |
+
model_name,
|
48 |
+
"--use-flash-attn",
|
49 |
+
]
|
50 |
+
if bits != 16:
|
51 |
+
worker_command += [f"--load-{bits}bit"]
|
52 |
+
print(worker_command)
|
53 |
+
return subprocess.Popen(worker_command)
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
parser = argparse.ArgumentParser()
|
58 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
59 |
+
parser.add_argument("--port", type=int)
|
60 |
+
parser.add_argument("--model-path", type=str, default="checkpoints/CuMo-mistral-7b")
|
61 |
+
parser.add_argument("--model-base", type=str, default=None)
|
62 |
+
parser.add_argument("--controller-url", type=str, default="http://localhost:10000")
|
63 |
+
parser.add_argument("--concurrency-count", type=int, default=5)
|
64 |
+
parser.add_argument("--bits", type=int, default=16)
|
65 |
+
parser.add_argument("--model-list-mode", type=str, default="reload", choices=["once", "reload"])
|
66 |
+
parser.add_argument("--share", action="store_true")
|
67 |
+
parser.add_argument("--moderate", action="store_true")
|
68 |
+
parser.add_argument("--embed", action="store_true")
|
69 |
+
gws.args = parser.parse_args()
|
70 |
+
gws.models = []
|
71 |
+
|
72 |
+
print(f"args: {gws.args}")
|
73 |
+
model_path = gws.args.model_path
|
74 |
+
bits = gws.args.bits
|
75 |
+
concurrency_count = int(os.getenv("concurrency_count", 5))
|
76 |
+
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
77 |
+
controller_proc = start_controller()
|
78 |
+
worker_proc = start_worker(model_path, bits=bits)
|
79 |
+
|
80 |
+
# Wait for worker and controller to start
|
81 |
+
time.sleep(10)
|
82 |
+
exit_status = 0
|
83 |
+
try:
|
84 |
+
demo = gws.build_demo(embed_mode=False, concurrency_count=concurrency_count)
|
85 |
+
demo.queue(
|
86 |
+
status_update_rate=10,
|
87 |
+
api_open=False
|
88 |
+
).launch(
|
89 |
+
server_name=gws.args.host,
|
90 |
+
server_port=gws.args.port,
|
91 |
+
share=gws.args.share
|
92 |
+
)
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
print(e)
|
96 |
+
exit_status = 1
|
97 |
+
finally:
|
98 |
+
worker_proc.kill()
|
99 |
+
controller_proc.kill()
|
100 |
+
|
101 |
+
sys.exit(exit_status)
|
checkpoints/CuMo-mistral-7b/.gitattributes
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model-00001-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
|
2 |
+
model-00002-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
|
3 |
+
model-00003-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
|
4 |
+
model-00004-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
|
checkpoints/CuMo-mistral-7b/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3f5d8f3e4f498cda037904a89f6763fd7fb9f78eb592f13b31c21eb035a0855
|
3 |
+
size 1477
|
checkpoints/CuMo-mistral-7b/generation_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e39d2130d0ad1e0663c1500e3e949848063444c146777aa0261a350e75b51ed7
|
3 |
+
size 132
|
checkpoints/CuMo-mistral-7b/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19603e0d739403c5f4de176a3602ad47e76c3a4a48530f274e77d9ca7cb046d0
|
3 |
+
size 4943162336
|
checkpoints/CuMo-mistral-7b/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6d0d28a261a074bc3efb64eddbeabe2bdd6edf751ae471f94030e1baf7c79ce
|
3 |
+
size 4999819336
|
checkpoints/CuMo-mistral-7b/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cf9aedb933a1d12ef7e459c6c79b137152fb0bb617c964c061bcae9482baa04
|
3 |
+
size 4994465584
|
checkpoints/CuMo-mistral-7b/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3a5a9b8bd8c548f156980185e55b358f376d7e886016887d05935987cb174b4
|
3 |
+
size 1563466696
|
checkpoints/CuMo-mistral-7b/model.safetensors.index.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1b7165f6ba48700c582c49e1a1a3d93202e4e4ee400f58461456a07e990259c
|
3 |
+
size 104461
|
checkpoints/CuMo-mistral-7b/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:719833ff26ac897a3ec8ed946028a135de2a351470af59b4008744ab1f0ee9b7
|
3 |
+
size 438
|
checkpoints/CuMo-mistral-7b/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
checkpoints/CuMo-mistral-7b/tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b517c3b2f923eb93532c182caf3db29e4dd163fae5d907a7763e6eb1050a5b6a
|
3 |
+
size 1463
|
checkpoints/CuMo-mistral-7b/trainer_state.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbb2f3d7e25ec367b238bca636fff426d5cd28a2943702ee72501713a7652b0c
|
3 |
+
size 780332
|
checkpoints/CuMo-mistral-7b/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e07781058fad2dc0cf6ae56705ae727b72e514536c68c3320062ed136159a485
|
3 |
+
size 7608
|
cumo/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
from .model import LlavaLlamaForCausalLM, LlavaMistralForCausalLM
|
3 |
+
except:
|
4 |
+
pass
|
cumo/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (289 Bytes). View file
|
|
cumo/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (289 Bytes). View file
|
|
cumo/__pycache__/constants.cpython-310.pyc
ADDED
Binary file (547 Bytes). View file
|
|
cumo/__pycache__/constants.cpython-39.pyc
ADDED
Binary file (545 Bytes). View file
|
|
cumo/__pycache__/conversation.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
cumo/__pycache__/conversation.cpython-39.pyc
ADDED
Binary file (10.6 kB). View file
|
|
cumo/__pycache__/mm_utils.cpython-310.pyc
ADDED
Binary file (8.81 kB). View file
|
|
cumo/__pycache__/mm_utils.cpython-39.pyc
ADDED
Binary file (8.78 kB). View file
|
|
cumo/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (4.07 kB). View file
|
|
cumo/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (4.06 kB). View file
|
|
cumo/constants.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
20 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
21 |
+
|
22 |
+
LOGDIR = "./logs/"
|
23 |
+
|
24 |
+
# Model Constants
|
25 |
+
IGNORE_INDEX = -100
|
26 |
+
IMAGE_TOKEN_INDEX = -200
|
27 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
28 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
29 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
30 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
31 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
cumo/conversation.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
import dataclasses
|
20 |
+
from enum import auto, Enum
|
21 |
+
from typing import List, Tuple
|
22 |
+
import base64
|
23 |
+
from io import BytesIO
|
24 |
+
from PIL import Image
|
25 |
+
|
26 |
+
class SeparatorStyle(Enum):
|
27 |
+
"""Different separator style."""
|
28 |
+
SINGLE = auto()
|
29 |
+
TWO = auto()
|
30 |
+
MPT = auto()
|
31 |
+
PLAIN = auto()
|
32 |
+
LLAMA_2 = auto()
|
33 |
+
|
34 |
+
|
35 |
+
@dataclasses.dataclass
|
36 |
+
class Conversation:
|
37 |
+
"""A class that keeps all conversation history."""
|
38 |
+
system: str
|
39 |
+
roles: List[str]
|
40 |
+
messages: List[List[str]]
|
41 |
+
offset: int
|
42 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
43 |
+
sep: str = "###"
|
44 |
+
sep2: str = None
|
45 |
+
version: str = "Unknown"
|
46 |
+
|
47 |
+
skip_next: bool = False
|
48 |
+
|
49 |
+
def get_prompt(self):
|
50 |
+
messages = self.messages
|
51 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
52 |
+
messages = self.messages.copy()
|
53 |
+
init_role, init_msg = messages[0].copy()
|
54 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
55 |
+
if 'mmtag' in self.version:
|
56 |
+
messages[0] = (init_role, init_msg)
|
57 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
58 |
+
messages.insert(1, (self.roles[1], "Received."))
|
59 |
+
else:
|
60 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
61 |
+
|
62 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
63 |
+
ret = self.system + self.sep
|
64 |
+
for role, message in messages:
|
65 |
+
if message:
|
66 |
+
if type(message) is tuple:
|
67 |
+
message, _, _ = message
|
68 |
+
ret += role + ": " + message + self.sep
|
69 |
+
else:
|
70 |
+
ret += role + ":"
|
71 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
72 |
+
seps = [self.sep, self.sep2]
|
73 |
+
ret = self.system + seps[0]
|
74 |
+
for i, (role, message) in enumerate(messages):
|
75 |
+
if message:
|
76 |
+
if type(message) is tuple:
|
77 |
+
message, _, _ = message
|
78 |
+
ret += role + ": " + message + seps[i % 2]
|
79 |
+
else:
|
80 |
+
ret += role + ":"
|
81 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
82 |
+
ret = self.system + self.sep
|
83 |
+
for role, message in messages:
|
84 |
+
if message:
|
85 |
+
if type(message) is tuple:
|
86 |
+
message, _, _ = message
|
87 |
+
ret += role + message + self.sep
|
88 |
+
else:
|
89 |
+
ret += role
|
90 |
+
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
91 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
|
92 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
93 |
+
ret = ""
|
94 |
+
|
95 |
+
for i, (role, message) in enumerate(messages):
|
96 |
+
if i == 0:
|
97 |
+
assert message, "first message should not be none"
|
98 |
+
assert role == self.roles[0], "first message should come from user"
|
99 |
+
if message:
|
100 |
+
if type(message) is tuple:
|
101 |
+
message, _, _ = message
|
102 |
+
if i == 0: message = wrap_sys(self.system) + message
|
103 |
+
if i % 2 == 0:
|
104 |
+
message = wrap_inst(message)
|
105 |
+
if i == 0:
|
106 |
+
ret += "<s>" + message
|
107 |
+
else:
|
108 |
+
ret += self.sep + message
|
109 |
+
else:
|
110 |
+
ret += " " + message + " " + self.sep2
|
111 |
+
else:
|
112 |
+
ret += ""
|
113 |
+
ret = ret.lstrip(self.sep)
|
114 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
115 |
+
seps = [self.sep, self.sep2]
|
116 |
+
ret = self.system
|
117 |
+
for i, (role, message) in enumerate(messages):
|
118 |
+
if message:
|
119 |
+
if type(message) is tuple:
|
120 |
+
message, _, _ = message
|
121 |
+
ret += message + seps[i % 2]
|
122 |
+
else:
|
123 |
+
ret += ""
|
124 |
+
else:
|
125 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
126 |
+
|
127 |
+
return ret
|
128 |
+
|
129 |
+
def append_message(self, role, message):
|
130 |
+
self.messages.append([role, message])
|
131 |
+
|
132 |
+
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
|
133 |
+
if image_process_mode == "Pad":
|
134 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
135 |
+
width, height = pil_img.size
|
136 |
+
if width == height:
|
137 |
+
return pil_img
|
138 |
+
elif width > height:
|
139 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
140 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
141 |
+
return result
|
142 |
+
else:
|
143 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
144 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
145 |
+
return result
|
146 |
+
image = expand2square(image)
|
147 |
+
elif image_process_mode in ["Default", "Crop"]:
|
148 |
+
pass
|
149 |
+
elif image_process_mode == "Resize":
|
150 |
+
image = image.resize((336, 336))
|
151 |
+
else:
|
152 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
153 |
+
if max(image.size) > max_len:
|
154 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
155 |
+
aspect_ratio = max_hw / min_hw
|
156 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
157 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
158 |
+
W, H = image.size
|
159 |
+
if H > W:
|
160 |
+
H, W = longest_edge, shortest_edge
|
161 |
+
else:
|
162 |
+
H, W = shortest_edge, longest_edge
|
163 |
+
image = image.resize((W, H))
|
164 |
+
if return_pil:
|
165 |
+
return image
|
166 |
+
else:
|
167 |
+
buffered = BytesIO()
|
168 |
+
image.save(buffered, format=image_format)
|
169 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
170 |
+
return img_b64_str
|
171 |
+
|
172 |
+
def get_images(self, return_pil=False):
|
173 |
+
images = []
|
174 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
175 |
+
if i % 2 == 0:
|
176 |
+
if type(msg) is tuple:
|
177 |
+
msg, image, image_process_mode = msg
|
178 |
+
image = self.process_image(image, image_process_mode, return_pil=return_pil)
|
179 |
+
images.append(image)
|
180 |
+
return images
|
181 |
+
|
182 |
+
def to_gradio_chatbot(self):
|
183 |
+
ret = []
|
184 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
185 |
+
if i % 2 == 0:
|
186 |
+
if type(msg) is tuple:
|
187 |
+
msg, image, image_process_mode = msg
|
188 |
+
img_b64_str = self.process_image(
|
189 |
+
image, "Default", return_pil=False,
|
190 |
+
image_format='JPEG')
|
191 |
+
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
192 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
193 |
+
ret.append([msg, None])
|
194 |
+
else:
|
195 |
+
ret.append([msg, None])
|
196 |
+
else:
|
197 |
+
ret[-1][-1] = msg
|
198 |
+
return ret
|
199 |
+
|
200 |
+
def copy(self):
|
201 |
+
return Conversation(
|
202 |
+
system=self.system,
|
203 |
+
roles=self.roles,
|
204 |
+
messages=[[x, y] for x, y in self.messages],
|
205 |
+
offset=self.offset,
|
206 |
+
sep_style=self.sep_style,
|
207 |
+
sep=self.sep,
|
208 |
+
sep2=self.sep2,
|
209 |
+
version=self.version)
|
210 |
+
|
211 |
+
def dict(self):
|
212 |
+
if len(self.get_images()) > 0:
|
213 |
+
return {
|
214 |
+
"system": self.system,
|
215 |
+
"roles": self.roles,
|
216 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
217 |
+
"offset": self.offset,
|
218 |
+
"sep": self.sep,
|
219 |
+
"sep2": self.sep2,
|
220 |
+
}
|
221 |
+
return {
|
222 |
+
"system": self.system,
|
223 |
+
"roles": self.roles,
|
224 |
+
"messages": self.messages,
|
225 |
+
"offset": self.offset,
|
226 |
+
"sep": self.sep,
|
227 |
+
"sep2": self.sep2,
|
228 |
+
}
|
229 |
+
|
230 |
+
|
231 |
+
conv_vicuna_v0 = Conversation(
|
232 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
233 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
234 |
+
roles=("Human", "Assistant"),
|
235 |
+
messages=(
|
236 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
237 |
+
("Assistant",
|
238 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
239 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
240 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
241 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
242 |
+
"renewable and non-renewable energy sources:\n"
|
243 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
244 |
+
"energy sources are finite and will eventually run out.\n"
|
245 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
246 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
247 |
+
"and other negative effects.\n"
|
248 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
249 |
+
"have lower operational costs than non-renewable sources.\n"
|
250 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
251 |
+
"locations than non-renewable sources.\n"
|
252 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
253 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
254 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
255 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
256 |
+
),
|
257 |
+
offset=2,
|
258 |
+
sep_style=SeparatorStyle.SINGLE,
|
259 |
+
sep="###",
|
260 |
+
)
|
261 |
+
|
262 |
+
conv_vicuna_v1 = Conversation(
|
263 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
264 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
265 |
+
roles=("USER", "ASSISTANT"),
|
266 |
+
version="v1",
|
267 |
+
messages=(),
|
268 |
+
offset=0,
|
269 |
+
sep_style=SeparatorStyle.TWO,
|
270 |
+
sep=" ",
|
271 |
+
sep2="</s>",
|
272 |
+
)
|
273 |
+
|
274 |
+
conv_mistral_instruct = Conversation(
|
275 |
+
system="",
|
276 |
+
roles=("USER", "ASSISTANT"),
|
277 |
+
version="llama_v2",
|
278 |
+
messages=(),
|
279 |
+
offset=0,
|
280 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
281 |
+
sep="",
|
282 |
+
sep2="</s>",
|
283 |
+
)
|
284 |
+
|
285 |
+
conv_mistral_instruct_system = Conversation(
|
286 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
287 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
288 |
+
roles=("USER", "ASSISTANT"),
|
289 |
+
version="llama_v2",
|
290 |
+
messages=(),
|
291 |
+
offset=0,
|
292 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
293 |
+
sep="",
|
294 |
+
sep2="</s>",
|
295 |
+
)
|
296 |
+
|
297 |
+
conv_llama_2 = Conversation(
|
298 |
+
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
299 |
+
|
300 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
|
301 |
+
roles=("USER", "ASSISTANT"),
|
302 |
+
version="llama_v2",
|
303 |
+
messages=(),
|
304 |
+
offset=0,
|
305 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
306 |
+
sep="<s>",
|
307 |
+
sep2="</s>",
|
308 |
+
)
|
309 |
+
|
310 |
+
conv_llava_llama_2 = Conversation(
|
311 |
+
system="You are a helpful language and vision assistant. "
|
312 |
+
"You are able to understand the visual content that the user provides, "
|
313 |
+
"and assist the user with a variety of tasks using natural language.",
|
314 |
+
roles=("USER", "ASSISTANT"),
|
315 |
+
version="llama_v2",
|
316 |
+
messages=(),
|
317 |
+
offset=0,
|
318 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
319 |
+
sep="<s>",
|
320 |
+
sep2="</s>",
|
321 |
+
)
|
322 |
+
|
323 |
+
conv_mpt = Conversation(
|
324 |
+
system="""<|im_start|>system
|
325 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
|
326 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
327 |
+
version="mpt",
|
328 |
+
messages=(),
|
329 |
+
offset=0,
|
330 |
+
sep_style=SeparatorStyle.MPT,
|
331 |
+
sep="<|im_end|>",
|
332 |
+
)
|
333 |
+
|
334 |
+
conv_llava_plain = Conversation(
|
335 |
+
system="",
|
336 |
+
roles=("", ""),
|
337 |
+
messages=(
|
338 |
+
),
|
339 |
+
offset=0,
|
340 |
+
sep_style=SeparatorStyle.PLAIN,
|
341 |
+
sep="\n",
|
342 |
+
)
|
343 |
+
|
344 |
+
conv_llava_v0 = Conversation(
|
345 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
346 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
347 |
+
roles=("Human", "Assistant"),
|
348 |
+
messages=(
|
349 |
+
),
|
350 |
+
offset=0,
|
351 |
+
sep_style=SeparatorStyle.SINGLE,
|
352 |
+
sep="###",
|
353 |
+
)
|
354 |
+
|
355 |
+
conv_llava_v0_mmtag = Conversation(
|
356 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
357 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
358 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
359 |
+
roles=("Human", "Assistant"),
|
360 |
+
messages=(
|
361 |
+
),
|
362 |
+
offset=0,
|
363 |
+
sep_style=SeparatorStyle.SINGLE,
|
364 |
+
sep="###",
|
365 |
+
version="v0_mmtag",
|
366 |
+
)
|
367 |
+
|
368 |
+
conv_llava_v1 = Conversation(
|
369 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
370 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
371 |
+
roles=("USER", "ASSISTANT"),
|
372 |
+
version="v1",
|
373 |
+
messages=(),
|
374 |
+
offset=0,
|
375 |
+
sep_style=SeparatorStyle.TWO,
|
376 |
+
sep=" ",
|
377 |
+
sep2="</s>",
|
378 |
+
)
|
379 |
+
|
380 |
+
conv_llava_v1_mmtag = Conversation(
|
381 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
382 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
383 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
384 |
+
roles=("USER", "ASSISTANT"),
|
385 |
+
messages=(),
|
386 |
+
offset=0,
|
387 |
+
sep_style=SeparatorStyle.TWO,
|
388 |
+
sep=" ",
|
389 |
+
sep2="</s>",
|
390 |
+
version="v1_mmtag",
|
391 |
+
)
|
392 |
+
|
393 |
+
conv_chatml_direct = Conversation(
|
394 |
+
system="""<|im_start|>system
|
395 |
+
Answer the questions.""",
|
396 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
397 |
+
version="mpt",
|
398 |
+
messages=(),
|
399 |
+
offset=0,
|
400 |
+
sep_style=SeparatorStyle.MPT,
|
401 |
+
sep="<|im_end|>",
|
402 |
+
)
|
403 |
+
|
404 |
+
default_conversation = conv_vicuna_v1
|
405 |
+
conv_templates = {
|
406 |
+
"default": conv_vicuna_v0,
|
407 |
+
"v0": conv_vicuna_v0,
|
408 |
+
"v1": conv_vicuna_v1,
|
409 |
+
"vicuna_v1": conv_vicuna_v1,
|
410 |
+
"llama_2": conv_llama_2,
|
411 |
+
"mistral_instruct": conv_mistral_instruct,
|
412 |
+
"mistral_instruct_system": conv_mistral_instruct_system,
|
413 |
+
"chatml_direct": conv_chatml_direct,
|
414 |
+
"mistral_direct": conv_chatml_direct,
|
415 |
+
"plain": conv_llava_plain,
|
416 |
+
"v0_plain": conv_llava_plain,
|
417 |
+
"llava_v0": conv_llava_v0,
|
418 |
+
"v0_mmtag": conv_llava_v0_mmtag,
|
419 |
+
"llava_v1": conv_llava_v1,
|
420 |
+
"v1_mmtag": conv_llava_v1_mmtag,
|
421 |
+
"llava_llama_2": conv_llava_llama_2,
|
422 |
+
"mpt": conv_mpt,
|
423 |
+
}
|
424 |
+
|
425 |
+
|
426 |
+
if __name__ == "__main__":
|
427 |
+
print(default_conversation.get_prompt())
|
cumo/eval/__pycache__/model_vqa.cpython-310.pyc
ADDED
Binary file (3.75 kB). View file
|
|
cumo/eval/__pycache__/model_vqa_loader.cpython-310.pyc
ADDED
Binary file (5.67 kB). View file
|
|
cumo/eval/calculate_score.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import argparse
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# !pip install python-Levenshtein
|
7 |
+
from Levenshtein import distance
|
8 |
+
import json
|
9 |
+
import sys
|
10 |
+
sys.path.append('../')
|
11 |
+
#from utilities import *
|
12 |
+
|
13 |
+
def read_json(path):
|
14 |
+
with open(path, 'r', encoding='utf-8') as f:
|
15 |
+
return json.load(f)
|
16 |
+
|
17 |
+
def save_json(data, path):
|
18 |
+
with open(path, 'w') as f:
|
19 |
+
json.dump(data, f, indent=4)
|
20 |
+
|
21 |
+
def get_most_similar(prediction, choices):
|
22 |
+
"""
|
23 |
+
Use the Levenshtein distance (or edit distance) to determine which of the choices is most similar to the given prediction
|
24 |
+
"""
|
25 |
+
distances = [distance(prediction, choice) for choice in choices]
|
26 |
+
ind = distances.index(min(distances))
|
27 |
+
return choices[ind]
|
28 |
+
# return min(choices, key=lambda choice: distance(prediction, choice))
|
29 |
+
|
30 |
+
|
31 |
+
def normalize_extracted_answer(extraction, choices, question_type, answer_type, precision):
|
32 |
+
"""
|
33 |
+
Normalize the extracted answer to match the answer type
|
34 |
+
"""
|
35 |
+
if question_type == 'multi_choice':
|
36 |
+
# make sure the extraction is a string
|
37 |
+
if isinstance(extraction, str):
|
38 |
+
extraction = extraction.strip()
|
39 |
+
else:
|
40 |
+
try:
|
41 |
+
extraction = str(extraction)
|
42 |
+
except:
|
43 |
+
extraction = ""
|
44 |
+
|
45 |
+
# extract "A" from "(A) text"
|
46 |
+
letter = re.findall(r'\(([a-zA-Z])\)', extraction)
|
47 |
+
if len(letter) > 0:
|
48 |
+
extraction = letter[0].upper()
|
49 |
+
|
50 |
+
options = [chr(ord('A') + i) for i in range(len(choices))]
|
51 |
+
|
52 |
+
if extraction in options:
|
53 |
+
# convert option letter to text, e.g. "A" -> "text"
|
54 |
+
ind = options.index(extraction)
|
55 |
+
extraction = choices[ind]
|
56 |
+
else:
|
57 |
+
# select the most similar option
|
58 |
+
extraction = get_most_similar(extraction, choices)
|
59 |
+
assert extraction in choices
|
60 |
+
|
61 |
+
elif answer_type == 'integer':
|
62 |
+
try:
|
63 |
+
extraction = str(int(float(extraction)))
|
64 |
+
except:
|
65 |
+
extraction = None
|
66 |
+
|
67 |
+
elif answer_type == 'float':
|
68 |
+
try:
|
69 |
+
extraction = str(round(float(extraction), precision))
|
70 |
+
except:
|
71 |
+
extraction = None
|
72 |
+
|
73 |
+
elif answer_type == 'list':
|
74 |
+
try:
|
75 |
+
extraction = str(extraction)
|
76 |
+
except:
|
77 |
+
extraction = None
|
78 |
+
|
79 |
+
return extraction
|
80 |
+
|
81 |
+
|
82 |
+
def safe_equal(prediction, answer):
|
83 |
+
"""
|
84 |
+
Check if the prediction is equal to the answer, even if they are of different types
|
85 |
+
"""
|
86 |
+
try:
|
87 |
+
if prediction == answer:
|
88 |
+
return True
|
89 |
+
return False
|
90 |
+
except Exception as e:
|
91 |
+
print(e)
|
92 |
+
return False
|
93 |
+
|
94 |
+
|
95 |
+
def get_acc_with_contion(res_pd, key, value):
|
96 |
+
if key == 'skills':
|
97 |
+
# if value in res_pd[key]:
|
98 |
+
total_pd = res_pd[res_pd[key].apply(lambda x: value in x)]
|
99 |
+
else:
|
100 |
+
total_pd = res_pd[res_pd[key] == value]
|
101 |
+
|
102 |
+
correct_pd = total_pd[total_pd['true_false'] == True]
|
103 |
+
acc = "{:.2f}".format(len(correct_pd) / len(total_pd) * 100)
|
104 |
+
return len(correct_pd), len(total_pd), acc
|
105 |
+
|
106 |
+
if __name__ == '__main__':
|
107 |
+
parser = argparse.ArgumentParser()
|
108 |
+
parser.add_argument('--output_dir', type=str, default='../results')
|
109 |
+
parser.add_argument('--output_file', type=str, default='output.json')
|
110 |
+
parser.add_argument('--score_file', type=str, default='scores.json')
|
111 |
+
parser.add_argument('--gt_file', type=str, default='../data/testmini.json', help='ground truth file')
|
112 |
+
parser.add_argument('--number', type=int, default=-1, help='number of problems to run')
|
113 |
+
parser.add_argument('--rerun', action='store_true', help='rerun the evaluation')
|
114 |
+
parser.add_argument('--caculate_gain', action='store_true', help='caculate the socre gains over random guess')
|
115 |
+
parser.add_argument('--random_file', type=str, default='score_random_guess.json')
|
116 |
+
args = parser.parse_args()
|
117 |
+
|
118 |
+
# args
|
119 |
+
output_file = os.path.join(args.output_dir, args.output_file)
|
120 |
+
|
121 |
+
# # quick test
|
122 |
+
# output_file = '../results/llava-llama-2-13b/output_llava_llama_2_13b.json'
|
123 |
+
|
124 |
+
# read json
|
125 |
+
print(f"Reading {output_file}...")
|
126 |
+
results = read_json(output_file)
|
127 |
+
|
128 |
+
# read ground truth
|
129 |
+
print(f"Reading {args.gt_file}...")
|
130 |
+
gts = read_json(args.gt_file)
|
131 |
+
|
132 |
+
# full pids
|
133 |
+
full_pids = list(results.keys())
|
134 |
+
if args.number > 0:
|
135 |
+
full_pids = full_pids[:min(args.number, len(full_pids))]
|
136 |
+
print("Number of testing problems:", len(full_pids))
|
137 |
+
|
138 |
+
## [1] Evaluate if the prediction is true or false
|
139 |
+
print("\nEvaluating the predictions...")
|
140 |
+
update_json_flag = False
|
141 |
+
for pid in full_pids:
|
142 |
+
problem = results[pid]
|
143 |
+
# print(problem)
|
144 |
+
|
145 |
+
if args.rerun:
|
146 |
+
if 'prediction' in problem:
|
147 |
+
del problem['prediction']
|
148 |
+
if 'true_false' in problem:
|
149 |
+
del problem['true_false']
|
150 |
+
|
151 |
+
choices = problem['choices']
|
152 |
+
question_type = problem['question_type']
|
153 |
+
answer_type = problem['answer_type']
|
154 |
+
precision = problem['precision']
|
155 |
+
extraction = problem['extraction']
|
156 |
+
|
157 |
+
if 'answer' in problem:
|
158 |
+
answer = problem['answer']
|
159 |
+
else:
|
160 |
+
answer = gts[pid]['answer']
|
161 |
+
problem['answer'] = answer
|
162 |
+
|
163 |
+
# normalize the extracted answer to match the answer type
|
164 |
+
prediction = normalize_extracted_answer(extraction, choices, question_type, answer_type, precision)
|
165 |
+
|
166 |
+
# verify the prediction is true or false
|
167 |
+
true_false = safe_equal(prediction, answer)
|
168 |
+
|
169 |
+
# update the problem
|
170 |
+
if "true_false" not in problem:
|
171 |
+
update_json_flag = True
|
172 |
+
|
173 |
+
elif true_false != problem['true_false']:
|
174 |
+
update_json_flag = True
|
175 |
+
|
176 |
+
if "prediction" not in problem:
|
177 |
+
update_json_flag = True
|
178 |
+
|
179 |
+
elif prediction != problem['prediction']:
|
180 |
+
update_json_flag = True
|
181 |
+
|
182 |
+
problem['prediction'] = prediction
|
183 |
+
problem['true_false'] = true_false
|
184 |
+
|
185 |
+
# save the updated json
|
186 |
+
if update_json_flag:
|
187 |
+
print("\n!!!Some problems are updated.!!!")
|
188 |
+
print(f"\nSaving {output_file}...")
|
189 |
+
save_json(results, output_file)
|
190 |
+
|
191 |
+
## [2] Calculate the average accuracy
|
192 |
+
total = len(full_pids)
|
193 |
+
correct = 0
|
194 |
+
for pid in full_pids:
|
195 |
+
if results[pid]['true_false']:
|
196 |
+
correct += 1
|
197 |
+
accuracy = str(round(correct / total * 100, 2))
|
198 |
+
print(f"\nCorrect: {correct}, Total: {total}, Accuracy: {accuracy}%")
|
199 |
+
|
200 |
+
scores = {"average": {"accuracy": accuracy, "correct": correct, "total": total}}
|
201 |
+
|
202 |
+
## [3] Calculate the fine-grained accuracy scores
|
203 |
+
|
204 |
+
# merge the 'metadata' attribute into the data
|
205 |
+
for pid in results:
|
206 |
+
results[pid].update(results[pid].pop('metadata'))
|
207 |
+
|
208 |
+
# convert the data to a pandas DataFrame
|
209 |
+
df = pd.DataFrame(results).T
|
210 |
+
|
211 |
+
print(len(df))
|
212 |
+
print("Number of test problems:", len(df))
|
213 |
+
# assert len(df) == 1000 # Important!!!
|
214 |
+
|
215 |
+
# asign the target keys for evaluation
|
216 |
+
target_keys = ['question_type', 'answer_type', 'language', 'source', 'category', 'task', 'context', 'grade', 'skills']
|
217 |
+
|
218 |
+
for key in target_keys:
|
219 |
+
print(f"\nType: [{key}]")
|
220 |
+
# get the unique values of the key
|
221 |
+
if key == 'skills':
|
222 |
+
# the value is a list
|
223 |
+
values = []
|
224 |
+
for i in range(len(df)):
|
225 |
+
values += df[key][i]
|
226 |
+
values = list(set(values))
|
227 |
+
else:
|
228 |
+
values = df[key].unique()
|
229 |
+
#print(values)
|
230 |
+
|
231 |
+
# calculate the accuracy for each value
|
232 |
+
scores[key] = {}
|
233 |
+
for value in values:
|
234 |
+
correct, total, acc = get_acc_with_contion(df, key, value)
|
235 |
+
if total > 0:
|
236 |
+
print(f"[{value}]: {acc}% ({correct}/{total})")
|
237 |
+
scores[key][value] = {"accuracy": acc, "correct": correct, "total": total}
|
238 |
+
|
239 |
+
# sort the scores by accuracy
|
240 |
+
scores[key] = dict(sorted(scores[key].items(), key=lambda item: float(item[1]['accuracy']), reverse=True))
|
241 |
+
|
242 |
+
# save the scores
|
243 |
+
scores_file = os.path.join(args.output_dir, args.score_file)
|
244 |
+
print(f"\nSaving {scores_file}...")
|
245 |
+
save_json(scores, scores_file)
|
246 |
+
print("\nDone!")
|
247 |
+
|
248 |
+
# [4] Calculate the score gains over random guess
|
249 |
+
if args.caculate_gain:
|
250 |
+
random_file = os.path.join(args.output_dir, args.random_file)
|
251 |
+
random_scores = json.load(open(random_file))
|
252 |
+
|
253 |
+
print("\nCalculating the score gains...")
|
254 |
+
for key in scores:
|
255 |
+
if key == 'average':
|
256 |
+
gain = round(float(scores[key]['accuracy']) - float(random_scores[key]['accuracy']), 2)
|
257 |
+
scores[key]['acc_gain'] = gain
|
258 |
+
else:
|
259 |
+
for sub_key in scores[key]:
|
260 |
+
gain = round(float(scores[key][sub_key]['accuracy']) - float(random_scores[key][sub_key]['accuracy']), 2)
|
261 |
+
scores[key][sub_key]['acc_gain'] = str(gain)
|
262 |
+
|
263 |
+
# save the score gains
|
264 |
+
print(f"\nSaving {scores_file}...")
|
265 |
+
save_json(scores, scores_file)
|
266 |
+
print("\nDone!")
|
cumo/eval/eval_gpt_review_bench.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
from lib2to3.pgen2.token import OP
|
4 |
+
import os
|
5 |
+
import openai
|
6 |
+
from openai import AzureOpenAI
|
7 |
+
from openai import OpenAI
|
8 |
+
import time
|
9 |
+
|
10 |
+
NUM_SECONDS_TO_SLEEP = 0.5
|
11 |
+
|
12 |
+
client = AzureOpenAI(
|
13 |
+
api_version="2024-01-25",
|
14 |
+
api_key="input your own api key",
|
15 |
+
)
|
16 |
+
|
17 |
+
def get_eval(content: str, max_tokens: int):
|
18 |
+
while True:
|
19 |
+
try:
|
20 |
+
response = client.chat.completions.create(
|
21 |
+
model='gpt-4',
|
22 |
+
messages=[{
|
23 |
+
'role': 'system',
|
24 |
+
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
25 |
+
}, {
|
26 |
+
'role': 'user',
|
27 |
+
'content': content,
|
28 |
+
}],
|
29 |
+
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
30 |
+
max_tokens=max_tokens,
|
31 |
+
)
|
32 |
+
break
|
33 |
+
|
34 |
+
except Exception as e:
|
35 |
+
print(e)
|
36 |
+
time.sleep(NUM_SECONDS_TO_SLEEP)
|
37 |
+
|
38 |
+
return response.choices[0].message.content
|
39 |
+
|
40 |
+
def parse_score(review):
|
41 |
+
try:
|
42 |
+
score_pair = review.split('\n')[0]
|
43 |
+
score_pair = score_pair.replace(',', ' ')
|
44 |
+
sp = score_pair.split(' ')
|
45 |
+
if len(sp) == 2:
|
46 |
+
return [float(sp[0]), float(sp[1])]
|
47 |
+
else:
|
48 |
+
print('error', review)
|
49 |
+
return [-1, -1]
|
50 |
+
except Exception as e:
|
51 |
+
print(e)
|
52 |
+
print('error', review)
|
53 |
+
return [-1, -1]
|
54 |
+
|
55 |
+
if __name__ == '__main__':
|
56 |
+
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
57 |
+
parser.add_argument('-q', '--question')
|
58 |
+
parser.add_argument('-c', '--context')
|
59 |
+
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
60 |
+
parser.add_argument('-r', '--rule')
|
61 |
+
parser.add_argument('-o', '--output')
|
62 |
+
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
63 |
+
args = parser.parse_args()
|
64 |
+
|
65 |
+
f_q = open(os.path.expanduser(args.question))
|
66 |
+
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
67 |
+
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
68 |
+
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
69 |
+
|
70 |
+
if os.path.isfile(os.path.expanduser(args.output)):
|
71 |
+
cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
|
72 |
+
else:
|
73 |
+
cur_reviews = []
|
74 |
+
|
75 |
+
review_file = open(f'{args.output}', 'a')
|
76 |
+
|
77 |
+
context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
|
78 |
+
image_to_context = {context['image']: context for context in context_list}
|
79 |
+
|
80 |
+
handles = []
|
81 |
+
idx = 0
|
82 |
+
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
83 |
+
ques = json.loads(ques_js)
|
84 |
+
ans1 = json.loads(ans1_js)
|
85 |
+
ans2 = json.loads(ans2_js)
|
86 |
+
|
87 |
+
inst = image_to_context[ques['image']]
|
88 |
+
|
89 |
+
if isinstance(inst['caption'], list):
|
90 |
+
cap_str = '\n'.join(inst['caption'])
|
91 |
+
else:
|
92 |
+
cap_str = inst['caption']
|
93 |
+
|
94 |
+
category = 'llava_bench_' + json.loads(ques_js)['category']
|
95 |
+
if category in rule_dict:
|
96 |
+
rule = rule_dict[category]
|
97 |
+
else:
|
98 |
+
assert False, f"Visual QA category not found in rule file: {category}."
|
99 |
+
prompt = rule['prompt']
|
100 |
+
role = rule['role']
|
101 |
+
content = (f'[Context]\n{cap_str}\n\n'
|
102 |
+
f'[Question]\n{ques["text"]}\n\n'
|
103 |
+
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
104 |
+
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
105 |
+
f'[System]\n{prompt}\n\n')
|
106 |
+
cur_js = {
|
107 |
+
'id': idx+1,
|
108 |
+
'question_id': ques['question_id'],
|
109 |
+
'answer1_id': ans1.get('answer_id', ans1['question_id']),
|
110 |
+
'answer2_id': ans2.get('answer_id', ans2['answer_id']),
|
111 |
+
'category': category
|
112 |
+
}
|
113 |
+
if idx >= len(cur_reviews):
|
114 |
+
review = get_eval(content, args.max_tokens)
|
115 |
+
scores = parse_score(review)
|
116 |
+
cur_js['content'] = review
|
117 |
+
cur_js['tuple'] = scores
|
118 |
+
review_file.write(json.dumps(cur_js) + '\n')
|
119 |
+
review_file.flush()
|
120 |
+
else:
|
121 |
+
print(f'Skipping {idx} as we already have it.')
|
122 |
+
idx += 1
|
123 |
+
print(idx)
|
124 |
+
review_file.close()
|
cumo/eval/eval_pope.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
def eval_pope(answers, label_file):
|
5 |
+
label_list = [json.loads(q)['label'] for q in open(label_file, 'r')]
|
6 |
+
|
7 |
+
for answer in answers:
|
8 |
+
text = answer['text']
|
9 |
+
|
10 |
+
# Only keep the first sentence
|
11 |
+
if text.find('.') != -1:
|
12 |
+
text = text.split('.')[0]
|
13 |
+
|
14 |
+
text = text.replace(',', '')
|
15 |
+
words = text.split(' ')
|
16 |
+
if 'No' in words or 'not' in words or 'no' in words:
|
17 |
+
answer['text'] = 'no'
|
18 |
+
else:
|
19 |
+
answer['text'] = 'yes'
|
20 |
+
|
21 |
+
for i in range(len(label_list)):
|
22 |
+
if label_list[i] == 'no':
|
23 |
+
label_list[i] = 0
|
24 |
+
else:
|
25 |
+
label_list[i] = 1
|
26 |
+
|
27 |
+
pred_list = []
|
28 |
+
for answer in answers:
|
29 |
+
if answer['text'] == 'no':
|
30 |
+
pred_list.append(0)
|
31 |
+
else:
|
32 |
+
pred_list.append(1)
|
33 |
+
|
34 |
+
pos = 1
|
35 |
+
neg = 0
|
36 |
+
yes_ratio = pred_list.count(1) / len(pred_list)
|
37 |
+
|
38 |
+
TP, TN, FP, FN = 0, 0, 0, 0
|
39 |
+
for pred, label in zip(pred_list, label_list):
|
40 |
+
if pred == pos and label == pos:
|
41 |
+
TP += 1
|
42 |
+
elif pred == pos and label == neg:
|
43 |
+
FP += 1
|
44 |
+
elif pred == neg and label == neg:
|
45 |
+
TN += 1
|
46 |
+
elif pred == neg and label == pos:
|
47 |
+
FN += 1
|
48 |
+
|
49 |
+
print('TP\tFP\tTN\tFN\t')
|
50 |
+
print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN))
|
51 |
+
|
52 |
+
precision = float(TP) / float(TP + FP)
|
53 |
+
recall = float(TP) / float(TP + FN)
|
54 |
+
f1 = 2*precision*recall / (precision + recall)
|
55 |
+
acc = (TP + TN) / (TP + TN + FP + FN)
|
56 |
+
print('Accuracy: {}'.format(acc))
|
57 |
+
print('Precision: {}'.format(precision))
|
58 |
+
print('Recall: {}'.format(recall))
|
59 |
+
print('F1 score: {}'.format(f1))
|
60 |
+
print('Yes ratio: {}'.format(yes_ratio))
|
61 |
+
print('%.3f, %.3f, %.3f, %.3f, %.3f' % (f1, acc, precision, recall, yes_ratio) )
|
62 |
+
return acc, f1
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
parser = argparse.ArgumentParser()
|
66 |
+
parser.add_argument("--annotation-dir", type=str)
|
67 |
+
parser.add_argument("--question-file", type=str)
|
68 |
+
parser.add_argument("--result-file", type=str)
|
69 |
+
args = parser.parse_args()
|
70 |
+
|
71 |
+
questions = [json.loads(line) for line in open(args.question_file)]
|
72 |
+
questions = {question['question_id']: question for question in questions}
|
73 |
+
answers = [json.loads(q) for q in open(args.result_file)]
|
74 |
+
acc_total = []
|
75 |
+
f1_total = []
|
76 |
+
for file in os.listdir(args.annotation_dir):
|
77 |
+
assert file.startswith('coco_pope_')
|
78 |
+
assert file.endswith('.json')
|
79 |
+
category = file[10:-5]
|
80 |
+
cur_answers = [x for x in answers if questions[x['question_id']]['category'] == category]
|
81 |
+
print('Category: {}, # samples: {}'.format(category, len(cur_answers)))
|
82 |
+
acc, f1 = eval_pope(cur_answers, os.path.join(args.annotation_dir, file))
|
83 |
+
acc_total.append(acc)
|
84 |
+
f1_total.append(f1)
|
85 |
+
print("====================================")
|
86 |
+
print('Average Acc: {}, Average F1: {}'.format(sum(acc_total)/len(acc_total), sum(f1_total)/len(f1_total)))
|
cumo/eval/eval_science_qa.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
|
7 |
+
|
8 |
+
def get_args():
|
9 |
+
parser = argparse.ArgumentParser()
|
10 |
+
parser.add_argument('--base-dir', type=str)
|
11 |
+
parser.add_argument('--result-file', type=str)
|
12 |
+
parser.add_argument('--output-file', type=str)
|
13 |
+
parser.add_argument('--output-result', type=str)
|
14 |
+
parser.add_argument('--split', type=str, default='test')
|
15 |
+
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
16 |
+
return parser.parse_args()
|
17 |
+
|
18 |
+
|
19 |
+
def convert_caps(results):
|
20 |
+
fakecaps = []
|
21 |
+
for result in results:
|
22 |
+
image_id = result['question_id']
|
23 |
+
caption = result['text']
|
24 |
+
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
25 |
+
return fakecaps
|
26 |
+
|
27 |
+
|
28 |
+
def get_pred_idx(prediction, choices, options):
|
29 |
+
"""
|
30 |
+
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
31 |
+
"""
|
32 |
+
if prediction in options[:len(choices)]:
|
33 |
+
return options.index(prediction)
|
34 |
+
else:
|
35 |
+
return -1
|
36 |
+
return random.choice(range(len(choices)))
|
37 |
+
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
args = get_args()
|
41 |
+
|
42 |
+
base_dir = args.base_dir
|
43 |
+
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
44 |
+
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
45 |
+
predictions = [json.loads(line) for line in open(args.result_file)]
|
46 |
+
predictions = {pred['question_id']: pred for pred in predictions}
|
47 |
+
split_problems = {idx: problems[idx] for idx in split_indices}
|
48 |
+
|
49 |
+
results = {'correct': [], 'incorrect': []}
|
50 |
+
sqa_results = {}
|
51 |
+
sqa_results['acc'] = None
|
52 |
+
sqa_results['correct'] = None
|
53 |
+
sqa_results['count'] = None
|
54 |
+
sqa_results['results'] = {}
|
55 |
+
sqa_results['outputs'] = {}
|
56 |
+
|
57 |
+
for prob_id, prob in split_problems.items():
|
58 |
+
if prob_id not in predictions:
|
59 |
+
pred = {'text': 'FAILED', 'prompt': 'Unknown'}
|
60 |
+
pred_text = 'FAILED'
|
61 |
+
else:
|
62 |
+
pred = predictions[prob_id]
|
63 |
+
pred_text = pred['text']
|
64 |
+
|
65 |
+
if pred_text in args.options:
|
66 |
+
answer = pred_text
|
67 |
+
elif len(pred_text) >= 3 and pred_text[0] in args.options and pred_text[1:3] == ". ":
|
68 |
+
answer = pred_text[0]
|
69 |
+
else:
|
70 |
+
pattern = re.compile(r'The answer is ([A-Z]).')
|
71 |
+
res = pattern.findall(pred_text)
|
72 |
+
if len(res) == 1:
|
73 |
+
answer = res[0] # 'A', 'B', ...
|
74 |
+
else:
|
75 |
+
answer = "FAILED"
|
76 |
+
|
77 |
+
pred_idx = get_pred_idx(answer, prob['choices'], args.options)
|
78 |
+
|
79 |
+
analysis = {
|
80 |
+
'question_id': prob_id,
|
81 |
+
'parsed_ans': answer,
|
82 |
+
'ground_truth': args.options[prob['answer']],
|
83 |
+
'question': pred['prompt'],
|
84 |
+
'pred': pred_text,
|
85 |
+
'is_multimodal': '<image>' in pred['prompt'],
|
86 |
+
}
|
87 |
+
|
88 |
+
sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
|
89 |
+
sqa_results['outputs'][prob_id] = pred_text
|
90 |
+
|
91 |
+
if pred_idx == prob['answer']:
|
92 |
+
results['correct'].append(analysis)
|
93 |
+
else:
|
94 |
+
results['incorrect'].append(analysis)
|
95 |
+
|
96 |
+
correct = len(results['correct'])
|
97 |
+
total = len(results['correct']) + len(results['incorrect'])
|
98 |
+
|
99 |
+
###### IMG ######
|
100 |
+
multimodal_correct = len([x for x in results['correct'] if x['is_multimodal']])
|
101 |
+
multimodal_incorrect = len([x for x in results['incorrect'] if x['is_multimodal']])
|
102 |
+
multimodal_total = multimodal_correct + multimodal_incorrect
|
103 |
+
###### IMG ######
|
104 |
+
|
105 |
+
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%, IMG-Accuracy: {multimodal_correct / multimodal_total * 100:.2f}%')
|
106 |
+
|
107 |
+
sqa_results['acc'] = correct / total * 100
|
108 |
+
sqa_results['correct'] = correct
|
109 |
+
sqa_results['count'] = total
|
110 |
+
|
111 |
+
with open(args.output_file, 'w') as f:
|
112 |
+
json.dump(results, f, indent=2)
|
113 |
+
with open(args.output_result, 'w') as f:
|
114 |
+
json.dump(sqa_results, f, indent=2)
|
cumo/eval/eval_textvqa.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
|
6 |
+
from cumo.eval.m4c_evaluator import TextVQAAccuracyEvaluator
|
7 |
+
|
8 |
+
|
9 |
+
def get_args():
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument('--annotation-file', type=str)
|
12 |
+
parser.add_argument('--result-file', type=str)
|
13 |
+
parser.add_argument('--result-dir', type=str)
|
14 |
+
return parser.parse_args()
|
15 |
+
|
16 |
+
|
17 |
+
def prompt_processor(prompt):
|
18 |
+
if prompt.startswith('OCR tokens: '):
|
19 |
+
pattern = r"Question: (.*?) Short answer:"
|
20 |
+
match = re.search(pattern, prompt, re.DOTALL)
|
21 |
+
question = match.group(1)
|
22 |
+
elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3:
|
23 |
+
if prompt.startswith('Reference OCR token:'):
|
24 |
+
question = prompt.split('\n')[1]
|
25 |
+
else:
|
26 |
+
question = prompt.split('\n')[0]
|
27 |
+
elif len(prompt.split('\n')) == 2:
|
28 |
+
question = prompt.split('\n')[0]
|
29 |
+
else:
|
30 |
+
assert False
|
31 |
+
|
32 |
+
return question.lower()
|
33 |
+
|
34 |
+
|
35 |
+
def eval_single(annotation_file, result_file):
|
36 |
+
experiment_name = os.path.splitext(os.path.basename(result_file))[0]
|
37 |
+
print(experiment_name)
|
38 |
+
annotations = json.load(open(annotation_file))['data']
|
39 |
+
annotations = {(annotation['image_id'], annotation['question'].lower()): annotation for annotation in annotations}
|
40 |
+
results = [json.loads(line) for line in open(result_file)]
|
41 |
+
|
42 |
+
pred_list = []
|
43 |
+
for result in results:
|
44 |
+
annotation = annotations[(result['question_id'], prompt_processor(result['prompt']))]
|
45 |
+
pred_list.append({
|
46 |
+
"pred_answer": result['text'],
|
47 |
+
"gt_answers": annotation['answers'],
|
48 |
+
})
|
49 |
+
|
50 |
+
evaluator = TextVQAAccuracyEvaluator()
|
51 |
+
print('Samples: {}\nAccuracy: {:.2f}%\n'.format(len(pred_list), 100. * evaluator.eval_pred_list(pred_list)))
|
52 |
+
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
args = get_args()
|
56 |
+
|
57 |
+
if args.result_file is not None:
|
58 |
+
eval_single(args.annotation_file, args.result_file)
|
59 |
+
|
60 |
+
if args.result_dir is not None:
|
61 |
+
for result_file in sorted(os.listdir(args.result_dir)):
|
62 |
+
if not result_file.endswith('.jsonl'):
|
63 |
+
print(f'Skipping {result_file}')
|
64 |
+
continue
|
65 |
+
eval_single(args.annotation_file, os.path.join(args.result_dir, result_file))
|
cumo/eval/extract_answer.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import time
|
4 |
+
import argparse
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
#from utilities import *
|
11 |
+
|
12 |
+
# OpenAI
|
13 |
+
from openai import AzureOpenAI
|
14 |
+
|
15 |
+
client = AzureOpenAI(
|
16 |
+
api_version="2024-01-25",
|
17 |
+
api_key="input your own api key",
|
18 |
+
)
|
19 |
+
|
20 |
+
# load demo prompt
|
21 |
+
demo_prompt = """
|
22 |
+
Please read the following example. Then extract the answer from the model response and type it at the end of the prompt.
|
23 |
+
|
24 |
+
Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end.
|
25 |
+
Question: Which number is missing?
|
26 |
+
|
27 |
+
Model response: The number missing in the sequence is 14.
|
28 |
+
|
29 |
+
Extracted answer: 14
|
30 |
+
|
31 |
+
Hint: Please answer the question requiring a floating-point number with one decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end.
|
32 |
+
Question: What is the fraction of females facing the camera?
|
33 |
+
|
34 |
+
Model response: The fraction of females facing the camera is 0.6, which means that six out of ten females in the group are facing the camera.
|
35 |
+
|
36 |
+
Extracted answer: 0.6
|
37 |
+
|
38 |
+
Hint: Please answer the question requiring a floating-point number with two decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the end.
|
39 |
+
Question: How much money does Luca need to buy a sour apple candy and a butterscotch candy? (Unit: $)
|
40 |
+
|
41 |
+
Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.
|
42 |
+
|
43 |
+
Extracted answer: 1.45
|
44 |
+
|
45 |
+
Hint: Please answer the question requiring a Python list as an answer and provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.
|
46 |
+
Question: Between which two years does the line graph saw its maximum peak?
|
47 |
+
|
48 |
+
Model response: The line graph saw its maximum peak between 2007 and 2008.
|
49 |
+
|
50 |
+
Extracted answer: [2007, 2008]
|
51 |
+
|
52 |
+
Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
53 |
+
Question: What fraction of the shape is blue?\nChoices:\n(A) 3/11\n(B) 8/11\n(C) 6/11\n(D) 3/5
|
54 |
+
|
55 |
+
Model response: The correct answer is (B) 8/11.
|
56 |
+
|
57 |
+
Extracted answer: B
|
58 |
+
"""
|
59 |
+
|
60 |
+
|
61 |
+
def read_json(path):
|
62 |
+
with open(path, 'r', encoding='utf-8') as f:
|
63 |
+
return json.load(f)
|
64 |
+
|
65 |
+
def save_json(data, path):
|
66 |
+
with open(path, 'w') as f:
|
67 |
+
json.dump(data, f, indent=4)
|
68 |
+
|
69 |
+
def get_chat_response_azure(promot, model="gpt-3.5-turbo", temperature=0, max_tokens=256, n=1, patience=10000000, sleep_time=0):
|
70 |
+
#messages = [
|
71 |
+
# {"role": "user", "content": promot},
|
72 |
+
#]
|
73 |
+
# print("I am here")
|
74 |
+
while patience > 0:
|
75 |
+
patience -= 1
|
76 |
+
try:
|
77 |
+
response = client.chat.completions.create(
|
78 |
+
model='gpt-3.5-turbo',
|
79 |
+
messages=[{
|
80 |
+
'role': 'system',
|
81 |
+
'content': 'You are a helpful and precis!ee assistant for checking the quality of the answer.'
|
82 |
+
}, {
|
83 |
+
'role': 'user',
|
84 |
+
'content': promot,
|
85 |
+
}],
|
86 |
+
temperature=temperature, # TODO: figure out which temperature is best for evaluation
|
87 |
+
max_tokens=max_tokens,
|
88 |
+
n=n
|
89 |
+
)
|
90 |
+
if n == 1:
|
91 |
+
prediction = response.choices[0].message.content.strip()
|
92 |
+
if prediction != "" and prediction != None:
|
93 |
+
return prediction
|
94 |
+
else:
|
95 |
+
prediction = [choice.message.content.strip() for choice in response.choices]
|
96 |
+
if prediction[0] != "" and prediction[0] != None:
|
97 |
+
return prediction
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
if "Rate limit" not in str(e):
|
101 |
+
print(e)
|
102 |
+
|
103 |
+
if "repetitive patterns" in str(e):
|
104 |
+
promot = re.sub(r'(.+?)\1+', r'\1', promot)
|
105 |
+
|
106 |
+
if "Please reduce the length of the messages" in str(e):
|
107 |
+
print("!!Reduce promot size")
|
108 |
+
# reduce input prompt and keep the tail
|
109 |
+
new_size = int(len(promot) * 0.9)
|
110 |
+
new_start = len(promot) - new_size
|
111 |
+
promot = promot[new_start:]
|
112 |
+
messages = [
|
113 |
+
{"role": "user", "content": promot},
|
114 |
+
]
|
115 |
+
|
116 |
+
if sleep_time > 0:
|
117 |
+
time.sleep(5)
|
118 |
+
time.sleep(1)
|
119 |
+
return ""
|
120 |
+
|
121 |
+
def verify_extraction(extraction):
|
122 |
+
extraction = extraction.strip()
|
123 |
+
if extraction == "" or extraction == None:
|
124 |
+
return False
|
125 |
+
return True
|
126 |
+
|
127 |
+
|
128 |
+
def create_test_prompt(demo_prompt, query, response):
|
129 |
+
demo_prompt = demo_prompt.strip()
|
130 |
+
test_prompt = f"{query}\n\n{response}"
|
131 |
+
full_prompt = f"{demo_prompt}\n\n{test_prompt}\n\nExtracted answer: "
|
132 |
+
return full_prompt
|
133 |
+
|
134 |
+
|
135 |
+
def extract_answer(response, problem, quick_extract=False):
|
136 |
+
question_type = problem['question_type']
|
137 |
+
answer_type = problem['answer_type']
|
138 |
+
choices = problem['choices']
|
139 |
+
query = problem['query']
|
140 |
+
pid = problem['pid']
|
141 |
+
|
142 |
+
if response == "":
|
143 |
+
return ""
|
144 |
+
|
145 |
+
if question_type == 'multi_choice' and response in choices:
|
146 |
+
return response
|
147 |
+
|
148 |
+
if answer_type == "integer":
|
149 |
+
try:
|
150 |
+
extraction = int(response)
|
151 |
+
return str(extraction)
|
152 |
+
except:
|
153 |
+
pass
|
154 |
+
|
155 |
+
if answer_type == "float":
|
156 |
+
try:
|
157 |
+
extraction = str(float(response))
|
158 |
+
return extraction
|
159 |
+
except:
|
160 |
+
pass
|
161 |
+
|
162 |
+
# quick extraction
|
163 |
+
if quick_extract:
|
164 |
+
print("Quickly extracting answer...")
|
165 |
+
# The answer is "text". -> "text"
|
166 |
+
try:
|
167 |
+
result = re.search(r'The answer is "(.*)"\.', response)
|
168 |
+
if result:
|
169 |
+
extraction = result.group(1)
|
170 |
+
return extraction
|
171 |
+
except:
|
172 |
+
pass
|
173 |
+
|
174 |
+
# general extraction
|
175 |
+
try:
|
176 |
+
full_prompt = create_test_prompt(demo_prompt, query, response)
|
177 |
+
extraction = get_chat_response_azure(full_prompt)
|
178 |
+
return extraction
|
179 |
+
except Exception as e:
|
180 |
+
print(e)
|
181 |
+
print(f"Error in extracting answer for {pid}")
|
182 |
+
|
183 |
+
return ""
|
184 |
+
|
185 |
+
|
186 |
+
if __name__ == '__main__':
|
187 |
+
parser = argparse.ArgumentParser()
|
188 |
+
# input
|
189 |
+
parser.add_argument('--output_dir', type=str, default='../results')
|
190 |
+
parser.add_argument('--output_file', type=str, default='answer.json')
|
191 |
+
parser.add_argument('--response_label', type=str, default='response', help='response label for the input file')
|
192 |
+
# model
|
193 |
+
parser.add_argument('--llm_engine', type=str, default='gpt-4-0613', help='llm engine',
|
194 |
+
choices = ['gpt-3.5-turbo', 'gpt-3.5', 'gpt-4', 'gpt-4-0314', 'gpt-4-0613'])
|
195 |
+
parser.add_argument('--number', type=int, default=-1, help='number of problems to run')
|
196 |
+
parser.add_argument('--quick_extract', action='store_true', help='use rules to extract answer for some problems')
|
197 |
+
parser.add_argument('--rerun', action='store_true', help='rerun the answer extraction')
|
198 |
+
# output
|
199 |
+
parser.add_argument('--save_every', type=int, default=100, help='save every n problems')
|
200 |
+
parser.add_argument('--output_label', type=str, default='', help='label for the output file')
|
201 |
+
args = parser.parse_args()
|
202 |
+
|
203 |
+
# args
|
204 |
+
#import pdb
|
205 |
+
#pdb.set_trace()
|
206 |
+
label = args.response_label
|
207 |
+
result_file = os.path.join(args.output_dir, args.output_file)
|
208 |
+
|
209 |
+
if args.output_label != '':
|
210 |
+
output_file = result_file.replace('.json', f'_{args.output_label}.json')
|
211 |
+
else:
|
212 |
+
output_file = result_file
|
213 |
+
|
214 |
+
# read results
|
215 |
+
print(f"Reading {result_file}...")
|
216 |
+
results = read_json(result_file)
|
217 |
+
|
218 |
+
# full pids
|
219 |
+
full_pids = list(results.keys())
|
220 |
+
if args.number > 0:
|
221 |
+
full_pids = full_pids[:min(args.number, len(full_pids))]
|
222 |
+
print("Number of testing problems:", len(full_pids))
|
223 |
+
|
224 |
+
# test pids
|
225 |
+
if args.rerun:
|
226 |
+
test_pids = full_pids
|
227 |
+
else:
|
228 |
+
test_pids = []
|
229 |
+
for pid in full_pids:
|
230 |
+
# print(pid)
|
231 |
+
if 'extraction' not in results[pid] or not verify_extraction(results[pid]['extraction']):
|
232 |
+
test_pids.append(pid)
|
233 |
+
|
234 |
+
test_num = len(test_pids)
|
235 |
+
print("Number of problems to run:", test_num)
|
236 |
+
# print(test_pids)
|
237 |
+
|
238 |
+
# tqdm, enumerate results
|
239 |
+
for i, pid in enumerate(tqdm(test_pids)):
|
240 |
+
problem = results[pid]
|
241 |
+
|
242 |
+
assert label in problem
|
243 |
+
response = problem[label]
|
244 |
+
|
245 |
+
|
246 |
+
extraction = extract_answer(response, problem, args.quick_extract)
|
247 |
+
results[pid]['extraction'] = extraction
|
248 |
+
|
249 |
+
if i % args.save_every == 0 or i == test_num - 1:
|
250 |
+
print(f"Saving results to {output_file}...")
|
251 |
+
save_json(results, output_file)
|
252 |
+
print(f"Results saved.")
|
cumo/eval/m4c_evaluator.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import re
|
3 |
+
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
class EvalAIAnswerProcessor:
|
8 |
+
"""
|
9 |
+
Processes an answer similar to Eval AI
|
10 |
+
copied from
|
11 |
+
https://github.com/facebookresearch/mmf/blob/c46b3b3391275b4181567db80943473a89ab98ab/pythia/tasks/processors.py#L897
|
12 |
+
"""
|
13 |
+
|
14 |
+
CONTRACTIONS = {
|
15 |
+
"aint": "ain't",
|
16 |
+
"arent": "aren't",
|
17 |
+
"cant": "can't",
|
18 |
+
"couldve": "could've",
|
19 |
+
"couldnt": "couldn't",
|
20 |
+
"couldn'tve": "couldn't've",
|
21 |
+
"couldnt've": "couldn't've",
|
22 |
+
"didnt": "didn't",
|
23 |
+
"doesnt": "doesn't",
|
24 |
+
"dont": "don't",
|
25 |
+
"hadnt": "hadn't",
|
26 |
+
"hadnt've": "hadn't've",
|
27 |
+
"hadn'tve": "hadn't've",
|
28 |
+
"hasnt": "hasn't",
|
29 |
+
"havent": "haven't",
|
30 |
+
"hed": "he'd",
|
31 |
+
"hed've": "he'd've",
|
32 |
+
"he'dve": "he'd've",
|
33 |
+
"hes": "he's",
|
34 |
+
"howd": "how'd",
|
35 |
+
"howll": "how'll",
|
36 |
+
"hows": "how's",
|
37 |
+
"Id've": "I'd've",
|
38 |
+
"I'dve": "I'd've",
|
39 |
+
"Im": "I'm",
|
40 |
+
"Ive": "I've",
|
41 |
+
"isnt": "isn't",
|
42 |
+
"itd": "it'd",
|
43 |
+
"itd've": "it'd've",
|
44 |
+
"it'dve": "it'd've",
|
45 |
+
"itll": "it'll",
|
46 |
+
"let's": "let's",
|
47 |
+
"maam": "ma'am",
|
48 |
+
"mightnt": "mightn't",
|
49 |
+
"mightnt've": "mightn't've",
|
50 |
+
"mightn'tve": "mightn't've",
|
51 |
+
"mightve": "might've",
|
52 |
+
"mustnt": "mustn't",
|
53 |
+
"mustve": "must've",
|
54 |
+
"neednt": "needn't",
|
55 |
+
"notve": "not've",
|
56 |
+
"oclock": "o'clock",
|
57 |
+
"oughtnt": "oughtn't",
|
58 |
+
"ow's'at": "'ow's'at",
|
59 |
+
"'ows'at": "'ow's'at",
|
60 |
+
"'ow'sat": "'ow's'at",
|
61 |
+
"shant": "shan't",
|
62 |
+
"shed've": "she'd've",
|
63 |
+
"she'dve": "she'd've",
|
64 |
+
"she's": "she's",
|
65 |
+
"shouldve": "should've",
|
66 |
+
"shouldnt": "shouldn't",
|
67 |
+
"shouldnt've": "shouldn't've",
|
68 |
+
"shouldn'tve": "shouldn't've",
|
69 |
+
"somebody'd": "somebodyd",
|
70 |
+
"somebodyd've": "somebody'd've",
|
71 |
+
"somebody'dve": "somebody'd've",
|
72 |
+
"somebodyll": "somebody'll",
|
73 |
+
"somebodys": "somebody's",
|
74 |
+
"someoned": "someone'd",
|
75 |
+
"someoned've": "someone'd've",
|
76 |
+
"someone'dve": "someone'd've",
|
77 |
+
"someonell": "someone'll",
|
78 |
+
"someones": "someone's",
|
79 |
+
"somethingd": "something'd",
|
80 |
+
"somethingd've": "something'd've",
|
81 |
+
"something'dve": "something'd've",
|
82 |
+
"somethingll": "something'll",
|
83 |
+
"thats": "that's",
|
84 |
+
"thered": "there'd",
|
85 |
+
"thered've": "there'd've",
|
86 |
+
"there'dve": "there'd've",
|
87 |
+
"therere": "there're",
|
88 |
+
"theres": "there's",
|
89 |
+
"theyd": "they'd",
|
90 |
+
"theyd've": "they'd've",
|
91 |
+
"they'dve": "they'd've",
|
92 |
+
"theyll": "they'll",
|
93 |
+
"theyre": "they're",
|
94 |
+
"theyve": "they've",
|
95 |
+
"twas": "'twas",
|
96 |
+
"wasnt": "wasn't",
|
97 |
+
"wed've": "we'd've",
|
98 |
+
"we'dve": "we'd've",
|
99 |
+
"weve": "we've",
|
100 |
+
"werent": "weren't",
|
101 |
+
"whatll": "what'll",
|
102 |
+
"whatre": "what're",
|
103 |
+
"whats": "what's",
|
104 |
+
"whatve": "what've",
|
105 |
+
"whens": "when's",
|
106 |
+
"whered": "where'd",
|
107 |
+
"wheres": "where's",
|
108 |
+
"whereve": "where've",
|
109 |
+
"whod": "who'd",
|
110 |
+
"whod've": "who'd've",
|
111 |
+
"who'dve": "who'd've",
|
112 |
+
"wholl": "who'll",
|
113 |
+
"whos": "who's",
|
114 |
+
"whove": "who've",
|
115 |
+
"whyll": "why'll",
|
116 |
+
"whyre": "why're",
|
117 |
+
"whys": "why's",
|
118 |
+
"wont": "won't",
|
119 |
+
"wouldve": "would've",
|
120 |
+
"wouldnt": "wouldn't",
|
121 |
+
"wouldnt've": "wouldn't've",
|
122 |
+
"wouldn'tve": "wouldn't've",
|
123 |
+
"yall": "y'all",
|
124 |
+
"yall'll": "y'all'll",
|
125 |
+
"y'allll": "y'all'll",
|
126 |
+
"yall'd've": "y'all'd've",
|
127 |
+
"y'alld've": "y'all'd've",
|
128 |
+
"y'all'dve": "y'all'd've",
|
129 |
+
"youd": "you'd",
|
130 |
+
"youd've": "you'd've",
|
131 |
+
"you'dve": "you'd've",
|
132 |
+
"youll": "you'll",
|
133 |
+
"youre": "you're",
|
134 |
+
"youve": "you've",
|
135 |
+
}
|
136 |
+
|
137 |
+
NUMBER_MAP = {
|
138 |
+
"none": "0",
|
139 |
+
"zero": "0",
|
140 |
+
"one": "1",
|
141 |
+
"two": "2",
|
142 |
+
"three": "3",
|
143 |
+
"four": "4",
|
144 |
+
"five": "5",
|
145 |
+
"six": "6",
|
146 |
+
"seven": "7",
|
147 |
+
"eight": "8",
|
148 |
+
"nine": "9",
|
149 |
+
"ten": "10",
|
150 |
+
}
|
151 |
+
ARTICLES = ["a", "an", "the"]
|
152 |
+
PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)")
|
153 |
+
COMMA_STRIP = re.compile(r"(?<=\d)(\,)+(?=\d)")
|
154 |
+
PUNCTUATIONS = [
|
155 |
+
";",
|
156 |
+
r"/",
|
157 |
+
"[",
|
158 |
+
"]",
|
159 |
+
'"',
|
160 |
+
"{",
|
161 |
+
"}",
|
162 |
+
"(",
|
163 |
+
")",
|
164 |
+
"=",
|
165 |
+
"+",
|
166 |
+
"\\",
|
167 |
+
"_",
|
168 |
+
"-",
|
169 |
+
">",
|
170 |
+
"<",
|
171 |
+
"@",
|
172 |
+
"`",
|
173 |
+
",",
|
174 |
+
"?",
|
175 |
+
"!",
|
176 |
+
]
|
177 |
+
|
178 |
+
def __init__(self, *args, **kwargs):
|
179 |
+
pass
|
180 |
+
|
181 |
+
def word_tokenize(self, word):
|
182 |
+
word = word.lower()
|
183 |
+
word = word.replace(",", "").replace("?", "").replace("'s", " 's")
|
184 |
+
return word.strip()
|
185 |
+
|
186 |
+
def process_punctuation(self, in_text):
|
187 |
+
out_text = in_text
|
188 |
+
for p in self.PUNCTUATIONS:
|
189 |
+
if (p + " " in in_text or " " + p in in_text) or (
|
190 |
+
re.search(self.COMMA_STRIP, in_text) is not None
|
191 |
+
):
|
192 |
+
out_text = out_text.replace(p, "")
|
193 |
+
else:
|
194 |
+
out_text = out_text.replace(p, " ")
|
195 |
+
out_text = self.PERIOD_STRIP.sub("", out_text, re.UNICODE)
|
196 |
+
return out_text
|
197 |
+
|
198 |
+
def process_digit_article(self, in_text):
|
199 |
+
out_text = []
|
200 |
+
temp_text = in_text.lower().split()
|
201 |
+
for word in temp_text:
|
202 |
+
word = self.NUMBER_MAP.setdefault(word, word)
|
203 |
+
if word not in self.ARTICLES:
|
204 |
+
out_text.append(word)
|
205 |
+
else:
|
206 |
+
pass
|
207 |
+
for word_id, word in enumerate(out_text):
|
208 |
+
if word in self.CONTRACTIONS:
|
209 |
+
out_text[word_id] = self.CONTRACTIONS[word]
|
210 |
+
out_text = " ".join(out_text)
|
211 |
+
return out_text
|
212 |
+
|
213 |
+
def __call__(self, item):
|
214 |
+
item = self.word_tokenize(item)
|
215 |
+
item = item.replace("\n", " ").replace("\t", " ").strip()
|
216 |
+
item = self.process_punctuation(item)
|
217 |
+
item = self.process_digit_article(item)
|
218 |
+
return item
|
219 |
+
|
220 |
+
|
221 |
+
class TextVQAAccuracyEvaluator:
|
222 |
+
def __init__(self):
|
223 |
+
self.answer_processor = EvalAIAnswerProcessor()
|
224 |
+
|
225 |
+
def _compute_answer_scores(self, raw_answers):
|
226 |
+
"""
|
227 |
+
compute the accuracy (soft score) of human answers
|
228 |
+
"""
|
229 |
+
answers = [self.answer_processor(a) for a in raw_answers]
|
230 |
+
assert len(answers) == 10
|
231 |
+
gt_answers = list(enumerate(answers))
|
232 |
+
unique_answers = set(answers)
|
233 |
+
unique_answer_scores = {}
|
234 |
+
|
235 |
+
for unique_answer in unique_answers:
|
236 |
+
accs = []
|
237 |
+
for gt_answer in gt_answers:
|
238 |
+
other_answers = [item for item in gt_answers if item != gt_answer]
|
239 |
+
matching_answers = [
|
240 |
+
item for item in other_answers if item[1] == unique_answer
|
241 |
+
]
|
242 |
+
acc = min(1, float(len(matching_answers)) / 3)
|
243 |
+
accs.append(acc)
|
244 |
+
unique_answer_scores[unique_answer] = sum(accs) / len(accs)
|
245 |
+
|
246 |
+
return unique_answer_scores
|
247 |
+
|
248 |
+
def eval_pred_list(self, pred_list):
|
249 |
+
pred_scores = []
|
250 |
+
for entry in tqdm(pred_list):
|
251 |
+
pred_answer = self.answer_processor(entry["pred_answer"])
|
252 |
+
unique_answer_scores = self._compute_answer_scores(entry["gt_answers"])
|
253 |
+
score = unique_answer_scores.get(pred_answer, 0.0)
|
254 |
+
pred_scores.append(score)
|
255 |
+
|
256 |
+
accuracy = sum(pred_scores) / len(pred_scores)
|
257 |
+
return accuracy
|
258 |
+
|
259 |
+
|
260 |
+
class STVQAAccuracyEvaluator:
|
261 |
+
def __init__(self):
|
262 |
+
self.answer_processor = EvalAIAnswerProcessor()
|
263 |
+
|
264 |
+
def eval_pred_list(self, pred_list):
|
265 |
+
pred_scores = []
|
266 |
+
for entry in pred_list:
|
267 |
+
pred_answer = self.answer_processor(entry["pred_answer"])
|
268 |
+
gts = [self.answer_processor(a) for a in entry["gt_answers"]]
|
269 |
+
score = 1.0 if pred_answer in gts else 0.0
|
270 |
+
pred_scores.append(score)
|
271 |
+
|
272 |
+
accuracy = sum(pred_scores) / len(pred_scores)
|
273 |
+
return accuracy
|
274 |
+
|
275 |
+
|
276 |
+
class STVQAANLSEvaluator:
|
277 |
+
def __init__(self):
|
278 |
+
import editdistance # install with `pip install editdistance`
|
279 |
+
|
280 |
+
self.get_edit_distance = editdistance.eval
|
281 |
+
|
282 |
+
def get_anls(self, s1, s2):
|
283 |
+
s1 = s1.lower().strip()
|
284 |
+
s2 = s2.lower().strip()
|
285 |
+
iou = 1 - self.get_edit_distance(s1, s2) / max(len(s1), len(s2))
|
286 |
+
anls = iou if iou >= 0.5 else 0.0
|
287 |
+
return anls
|
288 |
+
|
289 |
+
def eval_pred_list(self, pred_list):
|
290 |
+
pred_scores = []
|
291 |
+
for entry in pred_list:
|
292 |
+
anls = max(
|
293 |
+
self.get_anls(entry["pred_answer"], gt) for gt in entry["gt_answers"]
|
294 |
+
)
|
295 |
+
pred_scores.append(anls)
|
296 |
+
|
297 |
+
accuracy = sum(pred_scores) / len(pred_scores)
|
298 |
+
return accuracy
|
299 |
+
|
300 |
+
|
301 |
+
class TextCapsBleu4Evaluator:
|
302 |
+
def __init__(self):
|
303 |
+
# The following script requires Java 1.8.0 and pycocotools installed.
|
304 |
+
# The pycocoevalcap can be installed with pip as
|
305 |
+
# pip install git+https://github.com/ronghanghu/coco-caption.git@python23
|
306 |
+
# Original pycocoevalcap code is at https://github.com/tylin/coco-caption
|
307 |
+
# but has no python3 support yet.
|
308 |
+
try:
|
309 |
+
from pycocoevalcap.bleu.bleu import Bleu
|
310 |
+
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
|
311 |
+
except ModuleNotFoundError:
|
312 |
+
print(
|
313 |
+
"Please install pycocoevalcap module using "
|
314 |
+
"pip install git+https://github.com/ronghanghu/coco-caption.git@python23" # noqa
|
315 |
+
)
|
316 |
+
raise
|
317 |
+
|
318 |
+
self.tokenizer = PTBTokenizer()
|
319 |
+
self.scorer = Bleu(4)
|
320 |
+
|
321 |
+
def eval_pred_list(self, pred_list):
|
322 |
+
# Create reference and hypotheses captions.
|
323 |
+
gts = {}
|
324 |
+
res = {}
|
325 |
+
for idx, entry in enumerate(pred_list):
|
326 |
+
gts[idx] = [{"caption": a} for a in entry["gt_answers"]]
|
327 |
+
res[idx] = [{"caption": entry["pred_answer"]}]
|
328 |
+
|
329 |
+
gts = self.tokenizer.tokenize(gts)
|
330 |
+
res = self.tokenizer.tokenize(res)
|
331 |
+
score, _ = self.scorer.compute_score(gts, res)
|
332 |
+
|
333 |
+
bleu4 = score[3] # score is (Bleu-1, Bleu-2, Bleu-3, Bleu-4)
|
334 |
+
return bleu4
|
cumo/eval/main_eval_only.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Parse and Evalate"""
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
|
5 |
+
from argparse import ArgumentParser
|
6 |
+
|
7 |
+
from cumo.eval.mmmu_utils.data_utils import save_json, CAT_SHORT2LONG, DOMAIN_CAT2SUB_CAT
|
8 |
+
from cumo.eval.mmmu_utils.eval_utils import evaluate, parse_multi_choice_response, parse_open_response, calculate_ins_level_acc
|
9 |
+
|
10 |
+
|
11 |
+
if __name__ == '__main__':
|
12 |
+
|
13 |
+
parser = ArgumentParser()
|
14 |
+
parser.add_argument('--output_path', type=str, default="./example_outputs/qwen_vl/total_val_output.json", help="The path to model output file.")
|
15 |
+
parser.add_argument('--answer_path', type=str, default="./eval/answer_dict_val.json", help="Answer file path.")
|
16 |
+
args = parser.parse_args()
|
17 |
+
|
18 |
+
output_dict = json.load(open(args.output_path))
|
19 |
+
answer_dict = json.load(open(args.answer_path))
|
20 |
+
|
21 |
+
# group by category
|
22 |
+
output_dict_w_cat = {}
|
23 |
+
for data_id, parsed_pred in output_dict.items():
|
24 |
+
category = "_".join(data_id.split("_")[1:-1])
|
25 |
+
if category not in output_dict_w_cat:
|
26 |
+
output_dict_w_cat.update({category: {}})
|
27 |
+
output_dict_w_cat[category].update({data_id: parsed_pred})
|
28 |
+
|
29 |
+
# group by category
|
30 |
+
answer_dict_w_cat = {}
|
31 |
+
for data_id, parsed_pred in answer_dict.items():
|
32 |
+
category = "_".join(data_id.split("_")[1:-1])
|
33 |
+
if category not in answer_dict_w_cat:
|
34 |
+
answer_dict_w_cat.update({category: {}})
|
35 |
+
answer_dict_w_cat[category].update({data_id: parsed_pred})
|
36 |
+
|
37 |
+
evaluation_result = {}
|
38 |
+
|
39 |
+
for category in CAT_SHORT2LONG.values():
|
40 |
+
print("Evaluating: {}".format(category))
|
41 |
+
# get cat_outputs and cat_answers
|
42 |
+
try:
|
43 |
+
cat_outputs = output_dict_w_cat[category]
|
44 |
+
cat_answers = answer_dict_w_cat[category]
|
45 |
+
except KeyError:
|
46 |
+
print("Skipping {} for not found".format(category))
|
47 |
+
continue
|
48 |
+
|
49 |
+
exampels_to_eval = []
|
50 |
+
for data_id, parsed_pred in cat_outputs.items():
|
51 |
+
question_type = cat_answers[data_id]['question_type']
|
52 |
+
if question_type != 'multiple-choice':
|
53 |
+
parsed_pred = parse_open_response(parsed_pred) # mainly for type consistency (make it number, etc.)
|
54 |
+
else:
|
55 |
+
parsed_pred = parsed_pred
|
56 |
+
|
57 |
+
exampels_to_eval.append({
|
58 |
+
"id": data_id,
|
59 |
+
"question_type": question_type,
|
60 |
+
"answer": cat_answers[data_id]['ground_truth'],
|
61 |
+
"parsed_pred": parsed_pred
|
62 |
+
})
|
63 |
+
|
64 |
+
judge_dict, metric_dict = evaluate(exampels_to_eval)
|
65 |
+
metric_dict.update({"num_example": len(exampels_to_eval)})
|
66 |
+
|
67 |
+
evaluation_result[category] = metric_dict
|
68 |
+
|
69 |
+
printable_results = {}
|
70 |
+
# add domain Subject
|
71 |
+
for domain, in_domain_cats in DOMAIN_CAT2SUB_CAT.items():
|
72 |
+
in_domain_cat_results = {}
|
73 |
+
for cat_name in in_domain_cats: # use the order in DOMAIN_CAT2SUB_CAT
|
74 |
+
if cat_name in evaluation_result.keys():
|
75 |
+
in_domain_cat_results[cat_name] = evaluation_result[cat_name]
|
76 |
+
else:
|
77 |
+
pass
|
78 |
+
in_domain_ins_acc = calculate_ins_level_acc(in_domain_cat_results)
|
79 |
+
in_domain_data_num = sum([cat_results['num_example'] for cat_results in in_domain_cat_results.values()])
|
80 |
+
printable_results['Overall-' + domain] = {"num": int(in_domain_data_num),
|
81 |
+
"acc": round(in_domain_ins_acc, 3)
|
82 |
+
}
|
83 |
+
# add sub category
|
84 |
+
for cat_name, cat_results in in_domain_cat_results.items():
|
85 |
+
printable_results[cat_name] = {"num": int(cat_results['num_example']),
|
86 |
+
"acc": round(cat_results['acc'], 3)
|
87 |
+
}
|
88 |
+
|
89 |
+
# table.append(["-----------------------------", "-----", "----"])
|
90 |
+
all_ins_acc = calculate_ins_level_acc(evaluation_result)
|
91 |
+
printable_results['Overall'] = {"num": sum([cat_results['num_example'] for cat_results in evaluation_result.values()]),
|
92 |
+
"acc": round(all_ins_acc, 3)
|
93 |
+
}
|
94 |
+
|
95 |
+
print(printable_results)
|
96 |
+
|
cumo/eval/mmmu_utils/data_utils.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for data load, save, and process (e.g., prompt construction)"""
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import yaml
|
6 |
+
import re
|
7 |
+
|
8 |
+
|
9 |
+
DOMAIN_CAT2SUB_CAT = {
|
10 |
+
'Art and Design': ['Art', 'Art_Theory', 'Design', 'Music'],
|
11 |
+
'Business': ['Accounting', 'Economics', 'Finance', 'Manage','Marketing'],
|
12 |
+
'Science': ['Biology', 'Chemistry', 'Geography', 'Math', 'Physics',],
|
13 |
+
'Health and Medicine': ['Basic_Medical_Science', 'Clinical_Medicine', 'Diagnostics_and_Laboratory_Medicine', 'Pharmacy', 'Public_Health'],
|
14 |
+
'Humanities and Social Science': ['History', 'Literature', 'Sociology', 'Psychology'],
|
15 |
+
'Tech and Engineering': ['Agriculture', 'Architecture_and_Engineering', 'Computer_Science', 'Electronics', 'Energy_and_Power', 'Materials', 'Mechanical_Engineering'],
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
CAT_SHORT2LONG = {
|
20 |
+
'acc': 'Accounting',
|
21 |
+
'agri': 'Agriculture',
|
22 |
+
'arch': 'Architecture_and_Engineering',
|
23 |
+
'art': 'Art',
|
24 |
+
'art_theory': 'Art_Theory',
|
25 |
+
'bas_med': 'Basic_Medical_Science',
|
26 |
+
'bio': 'Biology',
|
27 |
+
'chem': 'Chemistry',
|
28 |
+
'cli_med': 'Clinical_Medicine',
|
29 |
+
'cs': 'Computer_Science',
|
30 |
+
'design': 'Design',
|
31 |
+
'diag_med': 'Diagnostics_and_Laboratory_Medicine',
|
32 |
+
'econ': 'Economics',
|
33 |
+
'elec': 'Electronics',
|
34 |
+
'ep': 'Energy_and_Power',
|
35 |
+
'fin': 'Finance',
|
36 |
+
'geo': 'Geography',
|
37 |
+
'his': 'History',
|
38 |
+
'liter': 'Literature',
|
39 |
+
'manage': 'Manage',
|
40 |
+
'mark': 'Marketing',
|
41 |
+
'mate': 'Materials',
|
42 |
+
'math': 'Math',
|
43 |
+
'mech': 'Mechanical_Engineering',
|
44 |
+
'music': 'Music',
|
45 |
+
'phar': 'Pharmacy',
|
46 |
+
'phys': 'Physics',
|
47 |
+
'psy': 'Psychology',
|
48 |
+
'pub_health': 'Public_Health',
|
49 |
+
'socio': 'Sociology'
|
50 |
+
}
|
51 |
+
|
52 |
+
# DATA SAVING
|
53 |
+
def save_json(filename, ds):
|
54 |
+
with open(filename, 'w') as f:
|
55 |
+
json.dump(ds, f, indent=4)
|
56 |
+
|
57 |
+
|
58 |
+
def get_multi_choice_info(options):
|
59 |
+
"""
|
60 |
+
Given the list of options for multiple choice question
|
61 |
+
Return the index2ans and all_choices
|
62 |
+
"""
|
63 |
+
|
64 |
+
start_chr = 'A'
|
65 |
+
all_choices = []
|
66 |
+
index2ans = {}
|
67 |
+
for i, option in enumerate(options):
|
68 |
+
index2ans[chr(ord(start_chr) + i)] = option
|
69 |
+
all_choices.append(chr(ord(start_chr) + i))
|
70 |
+
|
71 |
+
return index2ans, all_choices
|
72 |
+
|
73 |
+
def load_yaml(file_path):
|
74 |
+
with open(file_path, 'r') as stream:
|
75 |
+
try:
|
76 |
+
yaml_dict = yaml.safe_load(stream)
|
77 |
+
except yaml.YAMLError as exc:
|
78 |
+
print(exc)
|
79 |
+
|
80 |
+
return yaml_dict
|
81 |
+
|
82 |
+
|
83 |
+
def parse_img_path(text):
|
84 |
+
matches = re.findall("<img='(.*?)'>", text)
|
85 |
+
return matches
|
86 |
+
|
87 |
+
def process_single_sample(data):
|
88 |
+
question = data['question']
|
89 |
+
o_imgs_paths = []
|
90 |
+
for option in data['options']:
|
91 |
+
current_o_imgs_paths = parse_img_path(option)
|
92 |
+
for img_path in current_o_imgs_paths:
|
93 |
+
o_imgs_paths.append(img_path)
|
94 |
+
|
95 |
+
if len(o_imgs_paths) > 1: # multiple images in options, used for random selection
|
96 |
+
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
|
97 |
+
'image': None, 'question_type': data['question_type']}
|
98 |
+
else:
|
99 |
+
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
|
100 |
+
'image': data['image_1'], 'question_type': data['question_type']}
|
101 |
+
|
102 |
+
|
103 |
+
# DATA SAVING
|
104 |
+
def save_json(filename, ds):
|
105 |
+
with open(filename, 'w') as f:
|
106 |
+
json.dump(ds, f, indent=4)
|
107 |
+
|
108 |
+
def save_jsonl(filename, data):
|
109 |
+
"""
|
110 |
+
Save a dictionary of data to a JSON Lines file with the filename as key and caption as value.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
filename (str): The path to the file where the data should be saved.
|
114 |
+
data (dict): The dictionary containing the data to save where key is the image path and value is the caption.
|
115 |
+
"""
|
116 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
117 |
+
for img_path, caption in data.items():
|
118 |
+
# Extract the base filename without the extension
|
119 |
+
base_filename = os.path.basename(img_path)
|
120 |
+
# Create a JSON object with the filename as the key and caption as the value
|
121 |
+
json_record = json.dumps({base_filename: caption}, ensure_ascii=False)
|
122 |
+
# Write the JSON object to the file, one per line
|
123 |
+
f.write(json_record + '\n')
|
124 |
+
|
125 |
+
def save_args(args, path_dir):
|
126 |
+
argsDict = args.__dict__
|
127 |
+
with open(path_dir + 'setting.txt', 'w') as f:
|
128 |
+
f.writelines('------------------ start ------------------' + '\n')
|
129 |
+
for eachArg, value in argsDict.items():
|
130 |
+
f.writelines(eachArg + ' : ' + str(value) + '\n')
|
131 |
+
f.writelines('------------------- end -------------------')
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
# DATA PROCESSING
|
136 |
+
def construct_prompt(sample, config):
|
137 |
+
question = sample['question']
|
138 |
+
options = eval(sample['options'])
|
139 |
+
example = ""
|
140 |
+
if sample['question_type'] == 'multiple-choice':
|
141 |
+
start_chr = 'A'
|
142 |
+
prediction_range = []
|
143 |
+
index2ans = {}
|
144 |
+
for option in options:
|
145 |
+
prediction_range.append(start_chr)
|
146 |
+
example += f"({start_chr}) {option}\n"
|
147 |
+
index2ans[start_chr] = option
|
148 |
+
start_chr = chr(ord(start_chr) + 1)
|
149 |
+
empty_prompt_sample_structure = config['multi_choice_example_format']
|
150 |
+
empty_prompt = empty_prompt_sample_structure.format(question, example)
|
151 |
+
res_dict = {}
|
152 |
+
res_dict['index2ans'] = index2ans
|
153 |
+
res_dict['correct_choice'] = sample['answer']
|
154 |
+
res_dict['all_choices'] = prediction_range
|
155 |
+
res_dict['empty_prompt'] = empty_prompt
|
156 |
+
if config['task_instructions']:
|
157 |
+
res_dict['final_input_prompt'] = config['task_instructions'].strip() + '\n\n' + empty_prompt
|
158 |
+
else:
|
159 |
+
res_dict['final_input_prompt'] = empty_prompt
|
160 |
+
|
161 |
+
res_dict['gt_content'] = options[ord(sample['answer'].upper()) - ord('A')]
|
162 |
+
else:
|
163 |
+
empty_prompt_sample_structure = config['short_ans_example_format']
|
164 |
+
empty_prompt = empty_prompt_sample_structure.format(question)
|
165 |
+
res_dict = {}
|
166 |
+
res_dict['empty_prompt'] = empty_prompt
|
167 |
+
if config['task_instructions']:
|
168 |
+
res_dict['final_input_prompt'] = config['task_instructions'].strip() + '\n\n' + empty_prompt
|
169 |
+
else:
|
170 |
+
res_dict['final_input_prompt'] = empty_prompt
|
171 |
+
res_dict['gt_content'] = sample['answer']
|
172 |
+
|
173 |
+
res_dict.update(sample)
|
174 |
+
return res_dict
|
cumo/eval/mmmu_utils/eval_utils.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Response Parsing and Evaluation for various models"""
|
2 |
+
from typing import Dict
|
3 |
+
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
random.seed(42)
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# ----------- Process Multi-choice -------------
|
10 |
+
def parse_multi_choice_response(response, all_choices, index2ans):
|
11 |
+
"""
|
12 |
+
Parse the prediction from the generated response.
|
13 |
+
Return the predicted index e.g., A, B, C, D.
|
14 |
+
"""
|
15 |
+
for char in [',', '.', '!', '?', ';', ':', "'"]:
|
16 |
+
response = response.strip(char)
|
17 |
+
response = " " + response + " " # add space to avoid partial match
|
18 |
+
|
19 |
+
index_ans = True
|
20 |
+
ans_with_brack = False
|
21 |
+
candidates = []
|
22 |
+
for choice in all_choices: # e.g., (A) (B) (C) (D)
|
23 |
+
if f'({choice})' in response:
|
24 |
+
candidates.append(choice)
|
25 |
+
ans_with_brack = True
|
26 |
+
|
27 |
+
if len(candidates) == 0:
|
28 |
+
for choice in all_choices: # e.g., A B C D
|
29 |
+
if f' {choice} ' in response:
|
30 |
+
candidates.append(choice)
|
31 |
+
|
32 |
+
# if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
|
33 |
+
if len(candidates) == 0 and len(response.split()) > 5:
|
34 |
+
for index, ans in index2ans.items():
|
35 |
+
if ans.lower() in response.lower():
|
36 |
+
candidates.append(index)
|
37 |
+
index_ans = False # it's content ans.
|
38 |
+
|
39 |
+
if len(candidates) == 0: # still not get answer, randomly choose one.
|
40 |
+
pred_index = random.choice(all_choices)
|
41 |
+
elif len(candidates) > 1:
|
42 |
+
start_indexes = []
|
43 |
+
if index_ans:
|
44 |
+
if ans_with_brack:
|
45 |
+
for can in candidates:
|
46 |
+
index = response.rfind(f'({can})')
|
47 |
+
start_indexes.append(index) # -1 will be ignored anyway
|
48 |
+
# start_indexes = [generated_response.index(f'({can})') for can in candidates]
|
49 |
+
else:
|
50 |
+
for can in candidates:
|
51 |
+
index = response.rfind(f" {can} ")
|
52 |
+
start_indexes.append(index)
|
53 |
+
else:
|
54 |
+
for can in candidates:
|
55 |
+
index = response.lower().rfind(index2ans[can].lower())
|
56 |
+
start_indexes.append(index)
|
57 |
+
# get the last one
|
58 |
+
pred_index = candidates[np.argmax(start_indexes)]
|
59 |
+
else: # if only one candidate, use it.
|
60 |
+
pred_index = candidates[0]
|
61 |
+
|
62 |
+
return pred_index
|
63 |
+
|
64 |
+
# ----------- Process Open -------------
|
65 |
+
def check_is_number(string):
|
66 |
+
"""
|
67 |
+
Check if the given string a number.
|
68 |
+
"""
|
69 |
+
try:
|
70 |
+
float(string.replace(',', ''))
|
71 |
+
return True
|
72 |
+
except ValueError:
|
73 |
+
# check if there's comma inside
|
74 |
+
return False
|
75 |
+
|
76 |
+
def normalize_str(string):
|
77 |
+
"""
|
78 |
+
Normalize the str to lower case and make them float numbers if possible.
|
79 |
+
"""
|
80 |
+
# check if characters in the string
|
81 |
+
|
82 |
+
# if number, numerize it.
|
83 |
+
string = string.strip()
|
84 |
+
|
85 |
+
is_number = check_is_number(string)
|
86 |
+
|
87 |
+
if is_number:
|
88 |
+
string = string.replace(',', '')
|
89 |
+
string = float(string)
|
90 |
+
# leave 2 decimal
|
91 |
+
string = round(string, 2)
|
92 |
+
return [string]
|
93 |
+
else: # it's likely to be a string
|
94 |
+
# lower it
|
95 |
+
string = string.lower()
|
96 |
+
if len(string) == 1:
|
97 |
+
return [" " + string, string + " "] # avoid trivial matches
|
98 |
+
return [string]
|
99 |
+
|
100 |
+
def extract_numbers(string):
|
101 |
+
"""
|
102 |
+
Exact all forms of numbers from a string with regex.
|
103 |
+
"""
|
104 |
+
# Pattern for numbers with commas
|
105 |
+
pattern_commas = r'-?\b\d{1,3}(?:,\d{3})+\b'
|
106 |
+
# Pattern for scientific notation
|
107 |
+
pattern_scientific = r'-?\d+(?:\.\d+)?[eE][+-]?\d+'
|
108 |
+
# Pattern for simple numbers without commas
|
109 |
+
pattern_simple = r'-?(?:\d+\.\d+|\.\d+|\d+\b)(?![eE][+-]?\d+)(?![,\d])'
|
110 |
+
|
111 |
+
# Extract numbers with commas
|
112 |
+
numbers_with_commas = re.findall(pattern_commas, string)
|
113 |
+
# Extract numbers in scientific notation
|
114 |
+
numbers_scientific = re.findall(pattern_scientific, string)
|
115 |
+
# Extract simple numbers without commas
|
116 |
+
numbers_simple = re.findall(pattern_simple, string)
|
117 |
+
|
118 |
+
# Combine all extracted numbers
|
119 |
+
all_numbers = numbers_with_commas + numbers_scientific + numbers_simple
|
120 |
+
return all_numbers
|
121 |
+
|
122 |
+
def parse_open_response(response):
|
123 |
+
"""
|
124 |
+
Parse the prediction from the generated response.
|
125 |
+
Return a list of predicted strings or numbers.
|
126 |
+
"""
|
127 |
+
# content = content.strip("\n").strip(".").strip(" ")
|
128 |
+
def get_key_subresponses(response):
|
129 |
+
key_responses = []
|
130 |
+
response = response.strip().strip(".").lower()
|
131 |
+
sub_responses = re.split(r'\.\s(?=[A-Z])|\n', response)
|
132 |
+
indicators_of_keys = ['could be ', 'so ', 'is ',
|
133 |
+
'thus ', 'therefore ', 'final ', 'answer ', 'result ']
|
134 |
+
key_responses = []
|
135 |
+
for index, resp in enumerate(sub_responses):
|
136 |
+
# if last one, accept it's an equation (the entire response can be just one sentence with equation)
|
137 |
+
if index == len(sub_responses) - 1:
|
138 |
+
indicators_of_keys.extend(['='])
|
139 |
+
shortest_key_response = None # the shortest response that may contain the answer (tail part of the response)
|
140 |
+
for indicator in indicators_of_keys:
|
141 |
+
if indicator in resp:
|
142 |
+
if not shortest_key_response:
|
143 |
+
shortest_key_response = resp.split(indicator)[-1].strip()
|
144 |
+
else:
|
145 |
+
if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
|
146 |
+
shortest_key_response = resp.split(indicator)[-1].strip()
|
147 |
+
# key_responses.append(resp.split(indicator)[1].strip())
|
148 |
+
|
149 |
+
if shortest_key_response:
|
150 |
+
# and it's not trivial
|
151 |
+
if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]:
|
152 |
+
key_responses.append(shortest_key_response)
|
153 |
+
if len(key_responses) == 0: # did not found any
|
154 |
+
return [response]
|
155 |
+
return key_responses
|
156 |
+
key_responses = get_key_subresponses(response)
|
157 |
+
|
158 |
+
pred_list = key_responses.copy() # keep the original string response
|
159 |
+
for resp in key_responses:
|
160 |
+
pred_list.extend(extract_numbers(resp))
|
161 |
+
|
162 |
+
tmp_pred_list = []
|
163 |
+
for i in range(len(pred_list)):
|
164 |
+
tmp_pred_list.extend(normalize_str(pred_list[i]))
|
165 |
+
pred_list = tmp_pred_list
|
166 |
+
|
167 |
+
# remove duplicates
|
168 |
+
pred_list = list(set(pred_list))
|
169 |
+
|
170 |
+
return pred_list
|
171 |
+
|
172 |
+
# ----------- Evaluation -------------
|
173 |
+
|
174 |
+
def eval_multi_choice(gold_i, pred_i):
|
175 |
+
"""
|
176 |
+
Evaluate a multiple choice instance.
|
177 |
+
"""
|
178 |
+
correct = False
|
179 |
+
# only they are exactly the same, we consider it as correct
|
180 |
+
if isinstance(gold_i, list):
|
181 |
+
for answer in gold_i:
|
182 |
+
if answer == pred_i:
|
183 |
+
correct = True
|
184 |
+
break
|
185 |
+
else: # gold_i is a string
|
186 |
+
if gold_i == pred_i:
|
187 |
+
correct = True
|
188 |
+
return correct
|
189 |
+
|
190 |
+
def eval_open(gold_i, pred_i):
|
191 |
+
"""
|
192 |
+
Evaluate an open question instance
|
193 |
+
"""
|
194 |
+
correct = False
|
195 |
+
if isinstance(gold_i, list):
|
196 |
+
# use float to avoid trivial matches
|
197 |
+
norm_answers = []
|
198 |
+
for answer in gold_i:
|
199 |
+
norm_answers.extend(normalize_str(answer))
|
200 |
+
else:
|
201 |
+
norm_answers = normalize_str(gold_i)
|
202 |
+
for pred in pred_i: # pred is already normalized in parse response phase
|
203 |
+
if isinstance(pred, str): # if it's a string, then find if ans in the pred_i
|
204 |
+
for norm_ans in norm_answers:
|
205 |
+
# only see if the string answer in the string pred
|
206 |
+
if isinstance(norm_ans, str) and norm_ans in pred:
|
207 |
+
if not correct:
|
208 |
+
correct = True
|
209 |
+
break
|
210 |
+
else: # it's a float number
|
211 |
+
if pred in norm_answers:
|
212 |
+
if not correct:
|
213 |
+
correct = True
|
214 |
+
break
|
215 |
+
return correct
|
216 |
+
|
217 |
+
# ----------- Batch Evaluation -------------
|
218 |
+
def evaluate(samples):
|
219 |
+
"""
|
220 |
+
Batch evaluation for multiple choice and open questions.
|
221 |
+
"""
|
222 |
+
pred_correct = 0
|
223 |
+
judge_dict = dict()
|
224 |
+
for sample in samples:
|
225 |
+
gold_i = sample['answer']
|
226 |
+
pred_i = sample['parsed_pred']
|
227 |
+
if sample['question_type'] == 'multiple-choice':
|
228 |
+
correct = eval_multi_choice(gold_i, pred_i)
|
229 |
+
else: # open question
|
230 |
+
correct = eval_open(gold_i, pred_i)
|
231 |
+
|
232 |
+
if correct:
|
233 |
+
judge_dict[sample['id']] = 'Correct'
|
234 |
+
pred_correct += 1
|
235 |
+
else:
|
236 |
+
judge_dict[sample['id']] = 'Wrong'
|
237 |
+
|
238 |
+
if len(samples) == 0:
|
239 |
+
return {'acc': 0}
|
240 |
+
return judge_dict, {'acc': pred_correct / len(samples)}
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
# ----------- Calculate Accuracy -------------
|
245 |
+
def calculate_ins_level_acc(results: Dict):
|
246 |
+
"""Calculate the instruction level accuracy for given Subject results"""
|
247 |
+
acc = 0
|
248 |
+
ins_num = 0
|
249 |
+
for cat_results in results.values():
|
250 |
+
acc += cat_results['acc'] * cat_results['num_example']
|
251 |
+
ins_num += cat_results['num_example']
|
252 |
+
if ins_num == 0:
|
253 |
+
return 0
|
254 |
+
return acc / ins_num
|
255 |
+
|
cumo/eval/model_qa.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
import shortuuid
|
8 |
+
|
9 |
+
from cumo.conversation import default_conversation
|
10 |
+
from cumo.utils import disable_torch_init
|
11 |
+
|
12 |
+
|
13 |
+
@torch.inference_mode()
|
14 |
+
def eval_model(model_name, questions_file, answers_file):
|
15 |
+
# Model
|
16 |
+
disable_torch_init()
|
17 |
+
model_name = os.path.expanduser(model_name)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
20 |
+
torch_dtype=torch.float16).cuda()
|
21 |
+
|
22 |
+
|
23 |
+
ques_file = open(os.path.expanduser(questions_file), "r")
|
24 |
+
ans_file = open(os.path.expanduser(answers_file), "w")
|
25 |
+
for i, line in enumerate(tqdm(ques_file)):
|
26 |
+
idx = json.loads(line)["question_id"]
|
27 |
+
qs = json.loads(line)["text"]
|
28 |
+
cat = json.loads(line)["category"]
|
29 |
+
conv = default_conversation.copy()
|
30 |
+
conv.append_message(conv.roles[0], qs)
|
31 |
+
prompt = conv.get_prompt()
|
32 |
+
inputs = tokenizer([prompt])
|
33 |
+
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
34 |
+
output_ids = model.generate(
|
35 |
+
input_ids,
|
36 |
+
do_sample=True,
|
37 |
+
use_cache=True,
|
38 |
+
temperature=0.7,
|
39 |
+
max_new_tokens=1024,)
|
40 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
41 |
+
try:
|
42 |
+
index = outputs.index(conv.sep, len(prompt))
|
43 |
+
except ValueError:
|
44 |
+
outputs += conv.sep
|
45 |
+
index = outputs.index(conv.sep, len(prompt))
|
46 |
+
|
47 |
+
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
|
48 |
+
ans_id = shortuuid.uuid()
|
49 |
+
ans_file.write(json.dumps({"question_id": idx,
|
50 |
+
"text": outputs,
|
51 |
+
"answer_id": ans_id,
|
52 |
+
"model_id": model_name,
|
53 |
+
"metadata": {}}) + "\n")
|
54 |
+
ans_file.flush()
|
55 |
+
ans_file.close()
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
parser = argparse.ArgumentParser()
|
59 |
+
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
60 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
61 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
62 |
+
args = parser.parse_args()
|
63 |
+
|
64 |
+
eval_model(args.model_name, args.question_file, args.answers_file)
|
cumo/eval/model_vqa.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
import shortuuid
|
7 |
+
|
8 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
9 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
10 |
+
from cumo.model.builder import load_pretrained_model
|
11 |
+
from cumo.utils import disable_torch_init
|
12 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
13 |
+
|
14 |
+
from PIL import Image
|
15 |
+
import math
|
16 |
+
|
17 |
+
|
18 |
+
def split_list(lst, n):
|
19 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
20 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
21 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
22 |
+
|
23 |
+
|
24 |
+
def get_chunk(lst, n, k):
|
25 |
+
chunks = split_list(lst, n)
|
26 |
+
return chunks[k]
|
27 |
+
|
28 |
+
|
29 |
+
def eval_model(args):
|
30 |
+
# Model
|
31 |
+
disable_torch_init()
|
32 |
+
model_path = os.path.expanduser(args.model_path)
|
33 |
+
model_name = get_model_name_from_path(model_path)
|
34 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
35 |
+
model.config.training = False
|
36 |
+
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
37 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
38 |
+
answers_file = os.path.expanduser(args.answers_file)
|
39 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
40 |
+
ans_file = open(answers_file, "w")
|
41 |
+
for line in tqdm(questions):
|
42 |
+
idx = line["question_id"]
|
43 |
+
image_file = line["image"]
|
44 |
+
qs = line["text"]
|
45 |
+
cur_prompt = qs
|
46 |
+
if model.config.mm_use_im_start_end:
|
47 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
48 |
+
else:
|
49 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
50 |
+
|
51 |
+
conv = conv_templates[args.conv_mode].copy()
|
52 |
+
conv.append_message(conv.roles[0], qs)
|
53 |
+
conv.append_message(conv.roles[1], None)
|
54 |
+
prompt = conv.get_prompt()
|
55 |
+
|
56 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
57 |
+
|
58 |
+
image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
|
59 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
60 |
+
|
61 |
+
with torch.inference_mode():
|
62 |
+
output_ids = model.generate(
|
63 |
+
input_ids,
|
64 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
65 |
+
image_sizes=[image.size],
|
66 |
+
do_sample=True if args.temperature > 0 else False,
|
67 |
+
#temperature=args.temperature,
|
68 |
+
#top_p=args.top_p,
|
69 |
+
num_beams=args.num_beams,
|
70 |
+
# no_repeat_ngram_size=3,
|
71 |
+
max_new_tokens=1024,
|
72 |
+
pad_token_id=tokenizer.eos_token_id,
|
73 |
+
use_cache=True)
|
74 |
+
|
75 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
76 |
+
|
77 |
+
ans_id = shortuuid.uuid()
|
78 |
+
ans_file.write(json.dumps({"question_id": idx,
|
79 |
+
"prompt": cur_prompt,
|
80 |
+
"text": outputs,
|
81 |
+
"answer_id": ans_id,
|
82 |
+
"model_id": model_name,
|
83 |
+
"metadata": {}}) + "\n")
|
84 |
+
ans_file.flush()
|
85 |
+
ans_file.close()
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
parser = argparse.ArgumentParser()
|
89 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
90 |
+
parser.add_argument("--model-base", type=str, default=None)
|
91 |
+
parser.add_argument("--image-folder", type=str, default="")
|
92 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
93 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
94 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
95 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
96 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
97 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
98 |
+
parser.add_argument("--top_p", type=float, default=None)
|
99 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
100 |
+
args = parser.parse_args()
|
101 |
+
|
102 |
+
eval_model(args)
|
cumo/eval/model_vqa_loader.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ------------------------------------------------------------------------
|
16 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) and S^2(https://github.com/bfshi/scaling_on_scales)
|
17 |
+
# Copyright 2024 Jiachen Li
|
18 |
+
# ------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import torch
|
22 |
+
import os
|
23 |
+
import json
|
24 |
+
from tqdm import tqdm
|
25 |
+
import shortuuid
|
26 |
+
|
27 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
28 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
29 |
+
from cumo.model.builder import load_pretrained_model
|
30 |
+
from cumo.utils import disable_torch_init
|
31 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
32 |
+
from torch.utils.data import Dataset, DataLoader
|
33 |
+
|
34 |
+
from PIL import Image
|
35 |
+
import math
|
36 |
+
import pdb
|
37 |
+
|
38 |
+
def split_list(lst, n):
|
39 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
40 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
41 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
42 |
+
|
43 |
+
|
44 |
+
def get_chunk(lst, n, k):
|
45 |
+
chunks = split_list(lst, n)
|
46 |
+
return chunks[k]
|
47 |
+
|
48 |
+
|
49 |
+
# Custom dataset class
|
50 |
+
class CustomDataset(Dataset):
|
51 |
+
def __init__(self, questions, image_folder, tokenizer, image_processor, model_config):
|
52 |
+
self.questions = questions
|
53 |
+
self.image_folder = image_folder
|
54 |
+
self.tokenizer = tokenizer
|
55 |
+
self.image_processor = image_processor
|
56 |
+
self.model_config = model_config
|
57 |
+
|
58 |
+
def __getitem__(self, index):
|
59 |
+
line = self.questions[index]
|
60 |
+
image_file = line["image"]
|
61 |
+
qs = line["text"]
|
62 |
+
if self.model_config.mm_use_im_start_end:
|
63 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
64 |
+
else:
|
65 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
66 |
+
|
67 |
+
conv = conv_templates[args.conv_mode].copy()
|
68 |
+
conv.append_message(conv.roles[0], qs)
|
69 |
+
conv.append_message(conv.roles[1], None)
|
70 |
+
prompt = conv.get_prompt()
|
71 |
+
image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
|
72 |
+
image_tensor = process_images([image], self.image_processor, self.model_config)[0]
|
73 |
+
|
74 |
+
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
|
75 |
+
|
76 |
+
return input_ids, image_tensor, image.size
|
77 |
+
|
78 |
+
def __len__(self):
|
79 |
+
return len(self.questions)
|
80 |
+
|
81 |
+
|
82 |
+
def collate_fn(batch):
|
83 |
+
input_ids, image_tensors, image_sizes = zip(*batch)
|
84 |
+
input_ids = torch.stack(input_ids, dim=0)
|
85 |
+
image_tensors = torch.stack(image_tensors, dim=0)
|
86 |
+
return input_ids, image_tensors, image_sizes
|
87 |
+
|
88 |
+
|
89 |
+
# DataLoader
|
90 |
+
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
|
91 |
+
assert batch_size == 1, "batch_size must be 1"
|
92 |
+
dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config)
|
93 |
+
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn)
|
94 |
+
return data_loader
|
95 |
+
|
96 |
+
|
97 |
+
def eval_model(args):
|
98 |
+
# Model
|
99 |
+
disable_torch_init()
|
100 |
+
model_path = os.path.expanduser(args.model_path)
|
101 |
+
model_name = get_model_name_from_path(model_path)
|
102 |
+
#tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
103 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, use_flash_attn=args.use_flash_attn)
|
104 |
+
model.config.training = False
|
105 |
+
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
106 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
107 |
+
answers_file = os.path.expanduser(args.answers_file)
|
108 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
109 |
+
ans_file = open(answers_file, "w")
|
110 |
+
|
111 |
+
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
|
112 |
+
args.conv_mode = args.conv_mode + '_mmtag'
|
113 |
+
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
|
114 |
+
|
115 |
+
data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config)
|
116 |
+
|
117 |
+
for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, questions), total=len(questions)):
|
118 |
+
idx = line["question_id"]
|
119 |
+
cur_prompt = line["text"]
|
120 |
+
|
121 |
+
input_ids = input_ids.to(device='cuda', non_blocking=True)
|
122 |
+
|
123 |
+
with torch.inference_mode():
|
124 |
+
output_ids = model.generate(
|
125 |
+
input_ids,
|
126 |
+
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
|
127 |
+
image_sizes=image_sizes,
|
128 |
+
do_sample=True if args.temperature > 0 else False,
|
129 |
+
#temperature=args.temperature,
|
130 |
+
#top_p=args.top_p,
|
131 |
+
num_beams=args.num_beams,
|
132 |
+
max_new_tokens=args.max_new_tokens,
|
133 |
+
pad_token_id=tokenizer.eos_token_id,
|
134 |
+
use_cache=True)
|
135 |
+
|
136 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
137 |
+
ans_id = shortuuid.uuid()
|
138 |
+
ans_file.write(json.dumps({"question_id": idx,
|
139 |
+
"prompt": cur_prompt,
|
140 |
+
"text": outputs,
|
141 |
+
"answer_id": ans_id,
|
142 |
+
"model_id": model_name,
|
143 |
+
"metadata": {}}) + "\n")
|
144 |
+
# ans_file.flush()
|
145 |
+
ans_file.close()
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
parser = argparse.ArgumentParser()
|
149 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
150 |
+
parser.add_argument("--model-base", type=str, default=None)
|
151 |
+
parser.add_argument("--image-folder", type=str, default="")
|
152 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
153 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
154 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
155 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
156 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
157 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
158 |
+
parser.add_argument("--top_p", type=float, default=None)
|
159 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
160 |
+
parser.add_argument("--load-8bit", action="store_true")
|
161 |
+
parser.add_argument("--load-4bit", action="store_true")
|
162 |
+
parser.add_argument("--use-flash-attn", action="store_true")
|
163 |
+
parser.add_argument("--max_new_tokens", type=int, default=128)
|
164 |
+
args = parser.parse_args()
|
165 |
+
|
166 |
+
eval_model(args)
|
cumo/eval/model_vqa_mathvista.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
import shortuuid
|
7 |
+
|
8 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
9 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
10 |
+
from cumo.model.builder import load_pretrained_model
|
11 |
+
from cumo.utils import disable_torch_init
|
12 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
13 |
+
|
14 |
+
from datasets import load_dataset, concatenate_datasets
|
15 |
+
|
16 |
+
from cumo.eval.mmmu_utils.data_utils import load_yaml, save_json, CAT_SHORT2LONG
|
17 |
+
|
18 |
+
from PIL import Image
|
19 |
+
import math
|
20 |
+
import re
|
21 |
+
|
22 |
+
def process_single_sample(data):
|
23 |
+
return {'id': data['id'], 'question': data['question'], 'options': data['options'], 'answer': data['answer'], 'image': data['decoded_image'], 'question_type': data['question_type']}
|
24 |
+
|
25 |
+
def construct_prompt(sample):
|
26 |
+
question = sample['question']
|
27 |
+
example = ""
|
28 |
+
if sample['question_type'] == 'multiple-choice':
|
29 |
+
start_chr = 'A'
|
30 |
+
prediction_range = []
|
31 |
+
index2ans = {}
|
32 |
+
for option in options:
|
33 |
+
prediction_range.append(start_chr)
|
34 |
+
example += f"({start_chr}) {option}\n"
|
35 |
+
index2ans[start_chr] = option
|
36 |
+
start_chr = chr(ord(start_chr) + 1)
|
37 |
+
#empty_prompt_sample_structure = config['multi_choice_example_format']
|
38 |
+
#empty_prompt = empty_prompt_sample_structure.format(question, example)
|
39 |
+
empty_prompt = question + '\n' + example + '\n' + "Answer with the option's letter from the given choices directly"
|
40 |
+
res_dict = {}
|
41 |
+
res_dict['index2ans'] = index2ans
|
42 |
+
res_dict['correct_choice'] = sample['answer']
|
43 |
+
res_dict['empty_prompt'] = empty_prompt
|
44 |
+
res_dict['final_input_prompt'] = empty_prompt
|
45 |
+
elif sample['question_type'] == 'free_form':
|
46 |
+
empty_prompt = question + '\n' + "Answer the question using a single word or phrase."
|
47 |
+
res_dict = {}
|
48 |
+
res_dict['empty_prompt'] = empty_prompt
|
49 |
+
res_dict['final_input_prompt'] = empty_prompt
|
50 |
+
|
51 |
+
res_dict.update(sample)
|
52 |
+
return res_dict
|
53 |
+
|
54 |
+
def split_list(lst, n):
|
55 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
56 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
57 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
58 |
+
|
59 |
+
|
60 |
+
def get_chunk(lst, n, k):
|
61 |
+
chunks = split_list(lst, n)
|
62 |
+
return chunks[k]
|
63 |
+
|
64 |
+
|
65 |
+
def eval_model(args):
|
66 |
+
# Model
|
67 |
+
disable_torch_init()
|
68 |
+
model_path = os.path.expanduser(args.model_path)
|
69 |
+
model_name = get_model_name_from_path(model_path)
|
70 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
71 |
+
model.config.training = False
|
72 |
+
|
73 |
+
# run for each subject
|
74 |
+
dataset = load_dataset(args.data_path, split=args.split)
|
75 |
+
|
76 |
+
answers_file = os.path.expanduser(args.answers_file)
|
77 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
78 |
+
out_samples = dict()
|
79 |
+
for ind, sample in enumerate(tqdm(dataset, total=len(dataset))):
|
80 |
+
pid = sample['pid']
|
81 |
+
|
82 |
+
qs = sample['question']
|
83 |
+
|
84 |
+
if sample['decoded_image'] is not None:
|
85 |
+
#image_file = line["image"]
|
86 |
+
#image = Image.open(os.path.join(args.image_folder, image_file))
|
87 |
+
image_tensor = process_images([sample['decoded_image'].convert('RGB')], image_processor, model.config)[0]
|
88 |
+
images = image_tensor.unsqueeze(0).half().cuda()
|
89 |
+
image_sizes = [sample['decoded_image'].size]
|
90 |
+
if getattr(model.config, 'mm_use_im_start_end', False):
|
91 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
92 |
+
else:
|
93 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
94 |
+
else:
|
95 |
+
images = None
|
96 |
+
image_sizes = None
|
97 |
+
|
98 |
+
conv = conv_templates[args.conv_mode].copy()
|
99 |
+
conv.append_message(conv.roles[0], qs)
|
100 |
+
conv.append_message(conv.roles[1], None)
|
101 |
+
prompt = conv.get_prompt()
|
102 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
103 |
+
|
104 |
+
with torch.inference_mode():
|
105 |
+
output_ids = model.generate(
|
106 |
+
input_ids,
|
107 |
+
images=images,
|
108 |
+
image_sizes=image_sizes,
|
109 |
+
do_sample=True if args.temperature > 0 else False,
|
110 |
+
#temperature=args.temperature,
|
111 |
+
max_new_tokens=1024,
|
112 |
+
pad_token_id=tokenizer.eos_token_id,
|
113 |
+
use_cache=True,
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
response = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
118 |
+
sample['response'] = response
|
119 |
+
del sample['decoded_image']
|
120 |
+
out_samples[pid] = sample
|
121 |
+
|
122 |
+
save_json(answers_file, out_samples)
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
parser = argparse.ArgumentParser()
|
126 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
127 |
+
parser.add_argument("--model-base", type=str, default=None)
|
128 |
+
parser.add_argument("--image-folder", type=str, default="")
|
129 |
+
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
130 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
131 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v0")
|
132 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
133 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
134 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
135 |
+
parser.add_argument('--data_path', type=str, default="AI4Math/MathVista") # hf dataset path.
|
136 |
+
parser.add_argument('--split', type=str, default='testmini')
|
137 |
+
parser.add_argument("--answer-prompter", action="store_true")
|
138 |
+
parser.add_argument("--single-pred-prompt", action="store_true")
|
139 |
+
args = parser.parse_args()
|
140 |
+
|
141 |
+
eval_model(args)
|
cumo/eval/model_vqa_mmbench.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
from tqdm import tqdm
|
7 |
+
import shortuuid
|
8 |
+
|
9 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
10 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
11 |
+
from cumo.model.builder import load_pretrained_model
|
12 |
+
from cumo.utils import disable_torch_init
|
13 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, load_image_from_base64, get_model_name_from_path
|
14 |
+
|
15 |
+
from PIL import Image
|
16 |
+
import math
|
17 |
+
|
18 |
+
|
19 |
+
all_options = ['A', 'B', 'C', 'D']
|
20 |
+
|
21 |
+
|
22 |
+
def split_list(lst, n):
|
23 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
24 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
25 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
26 |
+
|
27 |
+
|
28 |
+
def get_chunk(lst, n, k):
|
29 |
+
chunks = split_list(lst, n)
|
30 |
+
return chunks[k]
|
31 |
+
|
32 |
+
|
33 |
+
def is_none(value):
|
34 |
+
if value is None:
|
35 |
+
return True
|
36 |
+
if type(value) is float and math.isnan(value):
|
37 |
+
return True
|
38 |
+
if type(value) is str and value.lower() == 'nan':
|
39 |
+
return True
|
40 |
+
if type(value) is str and value.lower() == 'none':
|
41 |
+
return True
|
42 |
+
return False
|
43 |
+
|
44 |
+
def get_options(row, options):
|
45 |
+
parsed_options = []
|
46 |
+
for option in options:
|
47 |
+
option_value = row[option]
|
48 |
+
if is_none(option_value):
|
49 |
+
break
|
50 |
+
parsed_options.append(option_value)
|
51 |
+
return parsed_options
|
52 |
+
|
53 |
+
|
54 |
+
def eval_model(args):
|
55 |
+
# Model
|
56 |
+
disable_torch_init()
|
57 |
+
model_path = os.path.expanduser(args.model_path)
|
58 |
+
model_name = get_model_name_from_path(model_path)
|
59 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
60 |
+
model.config.training = False
|
61 |
+
questions = pd.read_table(os.path.expanduser(args.question_file))
|
62 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
63 |
+
answers_file = os.path.expanduser(args.answers_file)
|
64 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
65 |
+
ans_file = open(answers_file, "w")
|
66 |
+
|
67 |
+
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
|
68 |
+
args.conv_mode = args.conv_mode + '_mmtag'
|
69 |
+
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
|
70 |
+
|
71 |
+
for index, row in tqdm(questions.iterrows(), total=len(questions)):
|
72 |
+
options = get_options(row, all_options)
|
73 |
+
cur_option_char = all_options[:len(options)]
|
74 |
+
|
75 |
+
if args.all_rounds:
|
76 |
+
num_rounds = len(options)
|
77 |
+
else:
|
78 |
+
num_rounds = 1
|
79 |
+
|
80 |
+
for round_idx in range(num_rounds):
|
81 |
+
idx = row['index']
|
82 |
+
question = row['question']
|
83 |
+
hint = row['hint']
|
84 |
+
image = load_image_from_base64(row['image'])
|
85 |
+
if not is_none(hint):
|
86 |
+
question = hint + '\n' + question
|
87 |
+
for option_char, option in zip(all_options[:len(options)], options):
|
88 |
+
question = question + '\n' + option_char + '. ' + option
|
89 |
+
qs = cur_prompt = question
|
90 |
+
if model.config.mm_use_im_start_end:
|
91 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
92 |
+
else:
|
93 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
94 |
+
|
95 |
+
if args.single_pred_prompt:
|
96 |
+
if args.lang == 'cn':
|
97 |
+
qs = qs + '\n' + "请直接回答选项字母。"
|
98 |
+
else:
|
99 |
+
qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
|
100 |
+
|
101 |
+
conv = conv_templates[args.conv_mode].copy()
|
102 |
+
conv.append_message(conv.roles[0], qs)
|
103 |
+
conv.append_message(conv.roles[1], None)
|
104 |
+
prompt = conv.get_prompt()
|
105 |
+
|
106 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
107 |
+
|
108 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
109 |
+
|
110 |
+
with torch.inference_mode():
|
111 |
+
output_ids = model.generate(
|
112 |
+
input_ids,
|
113 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
114 |
+
image_sizes=[image.size],
|
115 |
+
do_sample=True if args.temperature > 0 else False,
|
116 |
+
#temperature=args.temperature,
|
117 |
+
#top_p=args.top_p,
|
118 |
+
num_beams=args.num_beams,
|
119 |
+
# no_repeat_ngram_size=3,
|
120 |
+
max_new_tokens=1024,
|
121 |
+
pad_token_id=tokenizer.eos_token_id,
|
122 |
+
use_cache=True)
|
123 |
+
|
124 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
125 |
+
|
126 |
+
ans_id = shortuuid.uuid()
|
127 |
+
ans_file.write(json.dumps({"question_id": idx,
|
128 |
+
"round_id": round_idx,
|
129 |
+
"prompt": cur_prompt,
|
130 |
+
"text": outputs,
|
131 |
+
"options": options,
|
132 |
+
"option_char": cur_option_char,
|
133 |
+
"answer_id": ans_id,
|
134 |
+
"model_id": model_name,
|
135 |
+
"metadata": {}}) + "\n")
|
136 |
+
ans_file.flush()
|
137 |
+
|
138 |
+
# rotate options
|
139 |
+
options = options[1:] + options[:1]
|
140 |
+
cur_option_char = cur_option_char[1:] + cur_option_char[:1]
|
141 |
+
ans_file.close()
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
parser = argparse.ArgumentParser()
|
145 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
146 |
+
parser.add_argument("--model-base", type=str, default=None)
|
147 |
+
parser.add_argument("--image-folder", type=str, default="")
|
148 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
149 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
150 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
151 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
152 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
153 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
154 |
+
parser.add_argument("--top_p", type=float, default=None)
|
155 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
156 |
+
parser.add_argument("--all-rounds", action="store_true")
|
157 |
+
parser.add_argument("--single-pred-prompt", action="store_true")
|
158 |
+
parser.add_argument("--lang", type=str, default="en")
|
159 |
+
args = parser.parse_args()
|
160 |
+
|
161 |
+
eval_model(args)
|
cumo/eval/model_vqa_mmmu.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
import shortuuid
|
7 |
+
|
8 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
9 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
10 |
+
from cumo.model.builder import load_pretrained_model
|
11 |
+
from cumo.utils import disable_torch_init
|
12 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
13 |
+
|
14 |
+
from datasets import load_dataset, concatenate_datasets
|
15 |
+
|
16 |
+
from cumo.eval.mmmu_utils.data_utils import load_yaml, save_json, CAT_SHORT2LONG
|
17 |
+
from cumo.eval.mmmu_utils.eval_utils import parse_multi_choice_response, parse_open_response
|
18 |
+
|
19 |
+
from PIL import Image
|
20 |
+
import math
|
21 |
+
import re
|
22 |
+
|
23 |
+
def process_single_sample(data):
|
24 |
+
question = data['question']
|
25 |
+
o_imgs_paths = []
|
26 |
+
for option in data['options']:
|
27 |
+
current_o_imgs_paths = re.findall("<img='(.*?)'>", option)
|
28 |
+
for img_path in current_o_imgs_paths:
|
29 |
+
o_imgs_paths.append(img_path)
|
30 |
+
|
31 |
+
if len(o_imgs_paths) > 1: # multiple images in options, used for random selection
|
32 |
+
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
|
33 |
+
'image': None, 'question_type': data['question_type']}
|
34 |
+
else:
|
35 |
+
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
|
36 |
+
'image': data['image_1'], 'question_type': data['question_type']}
|
37 |
+
|
38 |
+
def construct_prompt(sample):
|
39 |
+
question = sample['question']
|
40 |
+
options = eval(sample['options'])
|
41 |
+
example = ""
|
42 |
+
if sample['question_type'] == 'multiple-choice':
|
43 |
+
start_chr = 'A'
|
44 |
+
prediction_range = []
|
45 |
+
index2ans = {}
|
46 |
+
for option in options:
|
47 |
+
prediction_range.append(start_chr)
|
48 |
+
example += f"({start_chr}) {option}\n"
|
49 |
+
index2ans[start_chr] = option
|
50 |
+
start_chr = chr(ord(start_chr) + 1)
|
51 |
+
empty_prompt = question + '\n' + example + '\n' + "Answer with the option's letter from the given choices directly"
|
52 |
+
res_dict = {}
|
53 |
+
res_dict['index2ans'] = index2ans
|
54 |
+
res_dict['correct_choice'] = sample['answer']
|
55 |
+
res_dict['all_choices'] = prediction_range
|
56 |
+
res_dict['empty_prompt'] = empty_prompt
|
57 |
+
res_dict['final_input_prompt'] = empty_prompt
|
58 |
+
res_dict['gt_content'] = options[ord(sample['answer'].upper()) - ord('A')]
|
59 |
+
else:
|
60 |
+
empty_prompt = question + '\n' + "Answer the question using a single word or phrase."
|
61 |
+
res_dict = {}
|
62 |
+
res_dict['empty_prompt'] = empty_prompt
|
63 |
+
res_dict['final_input_prompt'] = empty_prompt
|
64 |
+
res_dict['gt_content'] = sample['answer']
|
65 |
+
|
66 |
+
res_dict.update(sample)
|
67 |
+
return res_dict
|
68 |
+
|
69 |
+
def split_list(lst, n):
|
70 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
71 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
72 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
73 |
+
|
74 |
+
|
75 |
+
def get_chunk(lst, n, k):
|
76 |
+
chunks = split_list(lst, n)
|
77 |
+
return chunks[k]
|
78 |
+
|
79 |
+
|
80 |
+
def eval_model(args):
|
81 |
+
# Model
|
82 |
+
disable_torch_init()
|
83 |
+
model_path = os.path.expanduser(args.model_path)
|
84 |
+
model_name = get_model_name_from_path(model_path)
|
85 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
86 |
+
model.config.training = False
|
87 |
+
|
88 |
+
# run for each subject
|
89 |
+
sub_dataset_list = []
|
90 |
+
for subject in CAT_SHORT2LONG.values():
|
91 |
+
print("loading ", subject)
|
92 |
+
sub_dataset = load_dataset(args.data_path, subject, split=args.split)
|
93 |
+
sub_dataset_list.append(sub_dataset)
|
94 |
+
|
95 |
+
# merge all dataset
|
96 |
+
dataset = concatenate_datasets(sub_dataset_list)
|
97 |
+
|
98 |
+
answers_file = os.path.expanduser(args.answers_file)
|
99 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
100 |
+
out_samples = dict()
|
101 |
+
|
102 |
+
for sample in tqdm(dataset, total=len(dataset)):
|
103 |
+
sample = process_single_sample(sample)
|
104 |
+
|
105 |
+
sample = construct_prompt(sample)
|
106 |
+
|
107 |
+
qs = sample['final_input_prompt'].replace('<image 1>', '').strip()
|
108 |
+
|
109 |
+
if sample['image'] is not None:
|
110 |
+
image_tensor = process_images([sample['image'].convert('RGB')], image_processor, model.config)[0]
|
111 |
+
images = image_tensor.unsqueeze(0).half().cuda()
|
112 |
+
image_sizes = [sample['image'].size]
|
113 |
+
if getattr(model.config, 'mm_use_im_start_end', False):
|
114 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
115 |
+
else:
|
116 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
117 |
+
else:
|
118 |
+
images = None
|
119 |
+
image_sizes = None
|
120 |
+
|
121 |
+
conv = conv_templates[args.conv_mode].copy()
|
122 |
+
conv.append_message(conv.roles[0], qs)
|
123 |
+
conv.append_message(conv.roles[1], None)
|
124 |
+
prompt = conv.get_prompt()
|
125 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
126 |
+
|
127 |
+
with torch.inference_mode():
|
128 |
+
output_ids = model.generate(
|
129 |
+
input_ids,
|
130 |
+
images=images,
|
131 |
+
image_sizes=image_sizes,
|
132 |
+
do_sample=True if args.temperature > 0 else False,
|
133 |
+
#temperature=args.temperature,
|
134 |
+
max_new_tokens=1024,
|
135 |
+
pad_token_id=tokenizer.eos_token_id,
|
136 |
+
use_cache=True,
|
137 |
+
)
|
138 |
+
|
139 |
+
response = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
140 |
+
if sample['question_type'] == 'multiple-choice':
|
141 |
+
pred_ans = parse_multi_choice_response(response, sample['all_choices'], sample['index2ans'])
|
142 |
+
else: # open question
|
143 |
+
pred_ans = response
|
144 |
+
out_samples[sample['id']] = pred_ans
|
145 |
+
|
146 |
+
save_json(answers_file, out_samples)
|
147 |
+
|
148 |
+
if __name__ == "__main__":
|
149 |
+
parser = argparse.ArgumentParser()
|
150 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
151 |
+
parser.add_argument("--model-base", type=str, default=None)
|
152 |
+
parser.add_argument("--image-folder", type=str, default="")
|
153 |
+
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
154 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
155 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v0")
|
156 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
157 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
158 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
159 |
+
parser.add_argument('--data_path', type=str, default="MMMU/MMMU") # hf dataset path.
|
160 |
+
parser.add_argument('--split', type=str, default='validation')
|
161 |
+
parser.add_argument("--answer-prompter", action="store_true")
|
162 |
+
parser.add_argument("--single-pred-prompt", action="store_true")
|
163 |
+
args = parser.parse_args()
|
164 |
+
|
165 |
+
eval_model(args)
|
cumo/eval/model_vqa_science.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ------------------------------------------------------------------------
|
16 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) and S^2(https://github.com/bfshi/scaling_on_scales)
|
17 |
+
# Copyright 2024 Jiachen Li
|
18 |
+
# ------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import torch
|
22 |
+
import os
|
23 |
+
import json
|
24 |
+
from tqdm import tqdm
|
25 |
+
import shortuuid
|
26 |
+
|
27 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
28 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
29 |
+
from cumo.model.builder import load_pretrained_model
|
30 |
+
from cumo.utils import disable_torch_init
|
31 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
32 |
+
|
33 |
+
from PIL import Image
|
34 |
+
import math
|
35 |
+
|
36 |
+
|
37 |
+
def split_list(lst, n):
|
38 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
39 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
40 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
41 |
+
|
42 |
+
|
43 |
+
def get_chunk(lst, n, k):
|
44 |
+
chunks = split_list(lst, n)
|
45 |
+
return chunks[k]
|
46 |
+
|
47 |
+
|
48 |
+
def eval_model(args):
|
49 |
+
# Model
|
50 |
+
disable_torch_init()
|
51 |
+
model_path = os.path.expanduser(args.model_path)
|
52 |
+
model_name = get_model_name_from_path(model_path)
|
53 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
54 |
+
model.config.training = False
|
55 |
+
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
|
56 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
57 |
+
answers_file = os.path.expanduser(args.answers_file)
|
58 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
59 |
+
ans_file = open(answers_file, "w")
|
60 |
+
for i, line in enumerate(tqdm(questions)):
|
61 |
+
idx = line["id"]
|
62 |
+
question = line['conversations'][0]
|
63 |
+
qs = question['value'].replace('<image>', '').strip()
|
64 |
+
cur_prompt = qs
|
65 |
+
|
66 |
+
if 'image' in line:
|
67 |
+
image_file = line["image"]
|
68 |
+
image = Image.open(os.path.join(args.image_folder, image_file))
|
69 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
70 |
+
images = image_tensor.unsqueeze(0).half().cuda()
|
71 |
+
image_sizes = [image.size]
|
72 |
+
if getattr(model.config, 'mm_use_im_start_end', False):
|
73 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
74 |
+
else:
|
75 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
76 |
+
cur_prompt = '<image>' + '\n' + cur_prompt
|
77 |
+
else:
|
78 |
+
images = None
|
79 |
+
image_sizes = None
|
80 |
+
|
81 |
+
if args.single_pred_prompt:
|
82 |
+
qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
|
83 |
+
cur_prompt = cur_prompt + '\n' + "Answer with the option's letter from the given choices directly."
|
84 |
+
|
85 |
+
conv = conv_templates[args.conv_mode].copy()
|
86 |
+
conv.append_message(conv.roles[0], qs)
|
87 |
+
conv.append_message(conv.roles[1], None)
|
88 |
+
prompt = conv.get_prompt()
|
89 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
90 |
+
|
91 |
+
with torch.inference_mode():
|
92 |
+
output_ids = model.generate(
|
93 |
+
input_ids,
|
94 |
+
images=images,
|
95 |
+
image_sizes=image_sizes,
|
96 |
+
do_sample=True if args.temperature > 0 else False,
|
97 |
+
#temperature=args.temperature,
|
98 |
+
max_new_tokens=1024,
|
99 |
+
pad_token_id=tokenizer.eos_token_id,
|
100 |
+
use_cache=True,
|
101 |
+
)
|
102 |
+
|
103 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
104 |
+
|
105 |
+
ans_id = shortuuid.uuid()
|
106 |
+
ans_file.write(json.dumps({"question_id": idx,
|
107 |
+
"prompt": cur_prompt,
|
108 |
+
"text": outputs,
|
109 |
+
"answer_id": ans_id,
|
110 |
+
"model_id": model_name,
|
111 |
+
"metadata": {}}) + "\n")
|
112 |
+
ans_file.flush()
|
113 |
+
ans_file.close()
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
parser = argparse.ArgumentParser()
|
117 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
118 |
+
parser.add_argument("--model-base", type=str, default=None)
|
119 |
+
parser.add_argument("--image-folder", type=str, default="")
|
120 |
+
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
121 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
122 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v0")
|
123 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
124 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
125 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
126 |
+
parser.add_argument("--answer-prompter", action="store_true")
|
127 |
+
parser.add_argument("--single-pred-prompt", action="store_true")
|
128 |
+
args = parser.parse_args()
|
129 |
+
|
130 |
+
eval_model(args)
|
cumo/eval/summarize_gpt_review.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
def parse_args():
|
9 |
+
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
10 |
+
parser.add_argument('-d', '--dir', default=None)
|
11 |
+
parser.add_argument('-v', '--version', default=None)
|
12 |
+
parser.add_argument('-s', '--select', nargs='*', default=None)
|
13 |
+
parser.add_argument('-f', '--files', nargs='*', default=[])
|
14 |
+
parser.add_argument('-i', '--ignore', nargs='*', default=[])
|
15 |
+
return parser.parse_args()
|
16 |
+
|
17 |
+
|
18 |
+
if __name__ == '__main__':
|
19 |
+
args = parse_args()
|
20 |
+
if args.ignore is not None:
|
21 |
+
args.ignore = [int(x) for x in args.ignore]
|
22 |
+
|
23 |
+
if len(args.files) > 0:
|
24 |
+
review_files = args.files
|
25 |
+
else:
|
26 |
+
review_files = [x for x in os.listdir(args.dir) if x.endswith('.jsonl') and (x.startswith('gpt4_text') or x.startswith('reviews_') or x.startswith('review_') or 'review' in args.dir)]
|
27 |
+
|
28 |
+
for review_file in sorted(review_files):
|
29 |
+
config = os.path.basename(review_file).replace('gpt4_text_', '').replace('.jsonl', '')
|
30 |
+
if args.select is not None and any(x not in config for x in args.select):
|
31 |
+
continue
|
32 |
+
if '0613' in config:
|
33 |
+
version = '0613'
|
34 |
+
else:
|
35 |
+
version = '0314'
|
36 |
+
if args.version is not None and args.version != version:
|
37 |
+
continue
|
38 |
+
scores = defaultdict(list)
|
39 |
+
print(config)
|
40 |
+
with open(os.path.join(args.dir, review_file) if args.dir is not None else review_file) as f:
|
41 |
+
for review_str in f:
|
42 |
+
review = json.loads(review_str)
|
43 |
+
if review['question_id'] in args.ignore:
|
44 |
+
continue
|
45 |
+
if 'category' in review:
|
46 |
+
scores[review['category']].append(review['tuple'])
|
47 |
+
scores['all'].append(review['tuple'])
|
48 |
+
else:
|
49 |
+
if 'tuple' in review:
|
50 |
+
scores['all'].append(review['tuple'])
|
51 |
+
else:
|
52 |
+
scores['all'].append(review['score'])
|
53 |
+
for k, v in sorted(scores.items()):
|
54 |
+
stats = np.asarray(v).mean(0).tolist()
|
55 |
+
stats = [round(x, 3) for x in stats]
|
56 |
+
# print(k, stats, round(stats[1]/stats[0]*100, 1))
|
57 |
+
print(k, round(stats[1]/stats[0]*100, 1), round(stats[0] * 10, 1), round(stats[1] * 10, 1))
|
58 |
+
print('=================================')
|
cumo/mm_utils.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
from PIL import Image
|
20 |
+
from io import BytesIO
|
21 |
+
import base64
|
22 |
+
import torch
|
23 |
+
import math
|
24 |
+
import ast
|
25 |
+
|
26 |
+
from transformers import StoppingCriteria
|
27 |
+
from cumo.constants import IMAGE_TOKEN_INDEX
|
28 |
+
|
29 |
+
|
30 |
+
def select_best_resolution(original_size, possible_resolutions):
|
31 |
+
"""
|
32 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
36 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
tuple: The best fit resolution in the format (width, height).
|
40 |
+
"""
|
41 |
+
original_width, original_height = original_size
|
42 |
+
best_fit = None
|
43 |
+
max_effective_resolution = 0
|
44 |
+
min_wasted_resolution = float('inf')
|
45 |
+
|
46 |
+
for width, height in possible_resolutions:
|
47 |
+
scale = min(width / original_width, height / original_height)
|
48 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
49 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
50 |
+
wasted_resolution = (width * height) - effective_resolution
|
51 |
+
|
52 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
53 |
+
max_effective_resolution = effective_resolution
|
54 |
+
min_wasted_resolution = wasted_resolution
|
55 |
+
best_fit = (width, height)
|
56 |
+
|
57 |
+
return best_fit
|
58 |
+
|
59 |
+
|
60 |
+
def resize_and_pad_image(image, target_resolution):
|
61 |
+
"""
|
62 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
image (PIL.Image.Image): The input image.
|
66 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
PIL.Image.Image: The resized and padded image.
|
70 |
+
"""
|
71 |
+
original_width, original_height = image.size
|
72 |
+
target_width, target_height = target_resolution
|
73 |
+
|
74 |
+
scale_w = target_width / original_width
|
75 |
+
scale_h = target_height / original_height
|
76 |
+
|
77 |
+
if scale_w < scale_h:
|
78 |
+
new_width = target_width
|
79 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
80 |
+
else:
|
81 |
+
new_height = target_height
|
82 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
83 |
+
|
84 |
+
# Resize the image
|
85 |
+
resized_image = image.resize((new_width, new_height))
|
86 |
+
|
87 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
88 |
+
paste_x = (target_width - new_width) // 2
|
89 |
+
paste_y = (target_height - new_height) // 2
|
90 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
91 |
+
|
92 |
+
return new_image
|
93 |
+
|
94 |
+
|
95 |
+
def divide_to_patches(image, patch_size):
|
96 |
+
"""
|
97 |
+
Divides an image into patches of a specified size.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
image (PIL.Image.Image): The input image.
|
101 |
+
patch_size (int): The size of each patch.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
105 |
+
"""
|
106 |
+
patches = []
|
107 |
+
width, height = image.size
|
108 |
+
for i in range(0, height, patch_size):
|
109 |
+
for j in range(0, width, patch_size):
|
110 |
+
box = (j, i, j + patch_size, i + patch_size)
|
111 |
+
patch = image.crop(box)
|
112 |
+
patches.append(patch)
|
113 |
+
|
114 |
+
return patches
|
115 |
+
|
116 |
+
|
117 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
118 |
+
"""
|
119 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
123 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
124 |
+
patch_size (int): The size of each image patch.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
128 |
+
"""
|
129 |
+
if type(grid_pinpoints) is list:
|
130 |
+
possible_resolutions = grid_pinpoints
|
131 |
+
else:
|
132 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
133 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
134 |
+
return width // patch_size, height // patch_size
|
135 |
+
|
136 |
+
|
137 |
+
def process_anyres_image(image, processor, grid_pinpoints):
|
138 |
+
"""
|
139 |
+
Process an image with variable resolutions.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
image (PIL.Image.Image): The input image to be processed.
|
143 |
+
processor: The image processor object.
|
144 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
torch.Tensor: A tensor containing the processed image patches.
|
148 |
+
"""
|
149 |
+
if type(grid_pinpoints) is list:
|
150 |
+
possible_resolutions = grid_pinpoints
|
151 |
+
else:
|
152 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
153 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
154 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
155 |
+
|
156 |
+
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
157 |
+
|
158 |
+
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
159 |
+
|
160 |
+
image_patches = [image_original_resize] + patches
|
161 |
+
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
162 |
+
for image_patch in image_patches]
|
163 |
+
return torch.stack(image_patches, dim=0)
|
164 |
+
|
165 |
+
|
166 |
+
def load_image_from_base64(image):
|
167 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
168 |
+
|
169 |
+
|
170 |
+
def expand2square(pil_img, background_color):
|
171 |
+
width, height = pil_img.size
|
172 |
+
if width == height:
|
173 |
+
return pil_img
|
174 |
+
elif width > height:
|
175 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
176 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
177 |
+
return result
|
178 |
+
else:
|
179 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
180 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
181 |
+
return result
|
182 |
+
|
183 |
+
|
184 |
+
def process_images(images, image_processor, model_cfg):
|
185 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
186 |
+
new_images = []
|
187 |
+
if image_aspect_ratio == 'pad':
|
188 |
+
for image in images:
|
189 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
190 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
191 |
+
new_images.append(image)
|
192 |
+
elif image_aspect_ratio == "anyres":
|
193 |
+
for image in images:
|
194 |
+
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
195 |
+
new_images.append(image)
|
196 |
+
else:
|
197 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
198 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
199 |
+
new_images = torch.stack(new_images, dim=0)
|
200 |
+
return new_images
|
201 |
+
|
202 |
+
|
203 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
204 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
205 |
+
|
206 |
+
def insert_separator(X, sep):
|
207 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
208 |
+
|
209 |
+
input_ids = []
|
210 |
+
offset = 0
|
211 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
212 |
+
offset = 1
|
213 |
+
input_ids.append(prompt_chunks[0][0])
|
214 |
+
|
215 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
216 |
+
input_ids.extend(x[offset:])
|
217 |
+
|
218 |
+
if return_tensors is not None:
|
219 |
+
if return_tensors == 'pt':
|
220 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
221 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
222 |
+
return input_ids
|
223 |
+
|
224 |
+
|
225 |
+
def get_model_name_from_path(model_path):
|
226 |
+
model_path = model_path.strip("/")
|
227 |
+
model_paths = model_path.split("/")
|
228 |
+
if model_paths[-1].startswith('checkpoint-'):
|
229 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
230 |
+
else:
|
231 |
+
return model_paths[-1]
|
232 |
+
|
233 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
234 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
235 |
+
self.keywords = keywords
|
236 |
+
self.keyword_ids = []
|
237 |
+
self.max_keyword_len = 0
|
238 |
+
for keyword in keywords:
|
239 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
240 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
241 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
242 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
243 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
244 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
245 |
+
self.tokenizer = tokenizer
|
246 |
+
self.start_len = input_ids.shape[1]
|
247 |
+
|
248 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
249 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
250 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
251 |
+
for keyword_id in self.keyword_ids:
|
252 |
+
truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
|
253 |
+
if torch.equal(truncated_output_ids, keyword_id):
|
254 |
+
return True
|
255 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
256 |
+
for keyword in self.keywords:
|
257 |
+
if keyword in outputs:
|
258 |
+
return True
|
259 |
+
return False
|
260 |
+
|
261 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
262 |
+
outputs = []
|
263 |
+
for i in range(output_ids.shape[0]):
|
264 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
265 |
+
return all(outputs)
|