Spaces:
Runtime error
Runtime error
sichaolong
commited on
Commit
·
4baf7bf
1
Parent(s):
4f0aaa3
Upload 97 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +4 -6
- __init__.py +11 -0
- app.py +53 -0
- app/build/asset-manifest.json +16 -0
- app/build/index.html +18 -0
- app/build/static/css/main.e24c9a9b.css +1 -0
- app/build/static/js/main.a2cdd7a2.js +0 -0
- app/build/static/js/main.a2cdd7a2.js.LICENSE.txt +60 -0
- app/build/static/js/main.ca662570.js +0 -0
- app/build/static/js/main.ca662570.js.LICENSE.txt +60 -0
- app/build/static/js/main.ed69b879.js +0 -0
- app/build/static/js/main.ed69b879.js.LICENSE.txt +60 -0
- app/build/static/media/WorkSans-Black.67c2c5a144333953880b.ttf +0 -0
- app/build/static/media/WorkSans-Bold.2bea7a7f7d052c74da25.ttf +0 -0
- app/build/static/media/WorkSans-Regular.bb287b894b27372d8ea7.ttf +0 -0
- app/build/static/media/WorkSans-SemiBold.1e98db4eb705b586728e.ttf +0 -0
- app/build/static/media/coffee-machine-lineal.ee32631219cc3986f861.gif +0 -0
- benchmark.py +108 -0
- const.py +80 -0
- ext/__init__.py +1 -0
- ext/__pycache__/__init__.cpython-38.pyc +0 -0
- ext/__pycache__/__init__.cpython-39.pyc +0 -0
- ext/__pycache__/image_watermark_handler.cpython-38.pyc +0 -0
- ext/__pycache__/image_watermark_handler.cpython-39.pyc +0 -0
- ext/image_watermark_handler.py +93 -0
- ext/request_info.txt +44 -0
- ext/test.py +341 -0
- file_manager/__init__.py +1 -0
- file_manager/__pycache__/__init__.cpython-38.pyc +0 -0
- file_manager/__pycache__/__init__.cpython-39.pyc +0 -0
- file_manager/__pycache__/file_manager.cpython-38.pyc +0 -0
- file_manager/__pycache__/file_manager.cpython-39.pyc +0 -0
- file_manager/__pycache__/storage_backends.cpython-38.pyc +0 -0
- file_manager/__pycache__/storage_backends.cpython-39.pyc +0 -0
- file_manager/__pycache__/utils.cpython-38.pyc +0 -0
- file_manager/__pycache__/utils.cpython-39.pyc +0 -0
- file_manager/file_manager.py +264 -0
- file_manager/storage_backends.py +46 -0
- file_manager/utils.py +67 -0
- helper.py +284 -0
- interactive_seg.py +203 -0
- make_gif.py +125 -0
- model/__init__.py +0 -0
- model/__pycache__/__init__.cpython-38.pyc +0 -0
- model/__pycache__/__init__.cpython-39.pyc +0 -0
- model/__pycache__/base.cpython-38.pyc +0 -0
- model/__pycache__/base.cpython-39.pyc +0 -0
- model/__pycache__/fcf.cpython-38.pyc +0 -0
- model/__pycache__/instruct_pix2pix.cpython-38.pyc +0 -0
- model/__pycache__/lama.cpython-38.pyc +0 -0
README.md
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
---
|
2 |
title: Lama Cleaner Demo
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
sdk_version: 3.23.0
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
|
|
1 |
---
|
2 |
title: Lama Cleaner Demo
|
3 |
+
emoji: 👀
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: purple
|
6 |
+
sdk: docker
|
|
|
|
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
9 |
---
|
__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.simplefilter("ignore", UserWarning)
|
3 |
+
|
4 |
+
from parse_args import parse_args
|
5 |
+
|
6 |
+
def entry_point():
|
7 |
+
args = parse_args()
|
8 |
+
# To make os.environ["XDG_CACHE_HOME"] = args.model_cache_dir works for diffusers
|
9 |
+
# https://github.com/huggingface/diffusers/blob/be99201a567c1ccd841dc16fb24e88f7f239c187/src/diffusers/utils/constants.py#L18
|
10 |
+
from lama_cleaner.server import main
|
11 |
+
main(args)
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from server import main
|
5 |
+
"""
|
6 |
+
LAMA Cleaner是一款用于图像去噪的工具,它使用了一种称为“局部自适应均值”的算法来去除图像中的噪声。
|
7 |
+
在使用LAMA Cleaner时,您需要提供一个掩码图像,以指示哪些区域需要去噪,哪些区域不需要去噪。
|
8 |
+
掩码图像可以是任何格式的图像文件,例如PNG、JPEG或BMP。
|
9 |
+
您可以使用任何图像编辑软件(例如Photoshop或GIMP)创建掩码图像。在掩码图像中,您需要使用黑色和白色来表示需要去噪和不需要去噪的区域。黑色表示需要去噪的区域,白色表示不需要去噪的区域。
|
10 |
+
|
11 |
+
创建掩码图像的步骤如下:
|
12 |
+
|
13 |
+
1、打开您要去噪的图像和一个空白图像。
|
14 |
+
2、在空白图像上使用画笔工具绘制黑色和白色的区域,以指示需要去噪和不需要去噪的区域。
|
15 |
+
3、将掩码图像保存为PNG、JPEG或BMP格式。
|
16 |
+
4、在使用LAMA Cleaner时,将掩码图像作为输入参数传递给它。
|
17 |
+
请注意,掩码图像的质量对去噪效果有很大影响。因此,您需要花费一些时间来创建一个准确的掩码图像,以获得最佳的去噪效果。
|
18 |
+
|
19 |
+
|
20 |
+
输入图像:要去噪的原始图像。
|
21 |
+
掩码图像:指示哪些区域需要去噪,哪些区域不需要去噪的掩码图像。掩码图像可以是任何格式的图像文件,例如PNG、JPEG或BMP。在掩码图像中,您需要使用黑色和白色来表示需要去噪和不需要去噪的区域。黑色表示需要去噪的区域,白色表示不需要去噪的区域。
|
22 |
+
块大小:用于计算局部均值的块的大小。块大小越大,去噪效果越好,但计算时间也会增加。
|
23 |
+
块步长:用于计算局部均值的块的步长。步长越小,去噪效果越好,但计算时间也会增加。
|
24 |
+
搜索窗口大小:用于搜索最佳匹配块的窗口大小。窗口大小越大,去噪效果越好,但计算时间也会增加。
|
25 |
+
相似度阈值:用于确定最佳匹配块的相似度阈值。相似度阈值越小,去噪效果越好,但计算时间也会增加。
|
26 |
+
去噪强度:控制去噪的强度。去噪强度越大,去噪效果越好,但可能会导致图像细节的丢失。
|
27 |
+
请注意,这些参数的最佳值取决于您的图像和应用场景。您需要根据实际情况进行调整,以获得最佳的去噪效果。
|
28 |
+
"""
|
29 |
+
class FakeArgs(BaseModel):
|
30 |
+
host: str = "127.0.0.1"
|
31 |
+
port: int = 7860
|
32 |
+
model: str = 'lama' # 使用的模型
|
33 |
+
hf_access_token: str = ""
|
34 |
+
sd_disable_nsfw: bool = False # 禁用稳定扩散NSFW检查器。
|
35 |
+
sd_cpu_textencoder: bool = True # 始终在CPU上运行稳定扩散TextEncoder模型。
|
36 |
+
sd_run_local: bool = False
|
37 |
+
sd_enable_xformers: bool = False
|
38 |
+
local_files_only: bool = False
|
39 |
+
cpu_offload: bool = False
|
40 |
+
device: str = "cpu" # CUDA /中央处理器/多处理器
|
41 |
+
gui: bool = False
|
42 |
+
gui_size: List[int] = [1000, 1000]
|
43 |
+
input: str = ''
|
44 |
+
disable_model_switch: bool = False
|
45 |
+
debug: bool = False
|
46 |
+
no_half: bool = False
|
47 |
+
disable_nsfw: bool = False
|
48 |
+
enable_xformers: bool = False
|
49 |
+
model_dir: str = ""
|
50 |
+
output_dir: str = "resources" # 自己指定文件上传的位置
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
main(FakeArgs())
|
app/build/asset-manifest.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"files": {
|
3 |
+
"main.css": "/static/css/main.e24c9a9b.css",
|
4 |
+
"main.js": "/static/js/main.ca662570.js",
|
5 |
+
"static/media/coffee-machine-lineal.gif": "/static/media/coffee-machine-lineal.ee32631219cc3986f861.gif",
|
6 |
+
"static/media/WorkSans-SemiBold.ttf": "/static/media/WorkSans-SemiBold.1e98db4eb705b586728e.ttf",
|
7 |
+
"static/media/WorkSans-Bold.ttf": "/static/media/WorkSans-Bold.2bea7a7f7d052c74da25.ttf",
|
8 |
+
"static/media/WorkSans-Regular.ttf": "/static/media/WorkSans-Regular.bb287b894b27372d8ea7.ttf",
|
9 |
+
"static/media/WorkSans-Black.ttf": "/static/media/WorkSans-Black.67c2c5a144333953880b.ttf",
|
10 |
+
"index.html": "/index.html"
|
11 |
+
},
|
12 |
+
"entrypoints": [
|
13 |
+
"static/css/main.e24c9a9b.css",
|
14 |
+
"static/js/main.ca662570.js"
|
15 |
+
]
|
16 |
+
}
|
app/build/index.html
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate"/>
|
5 |
+
<meta http-equiv="Pragma" content="no-cache"/>
|
6 |
+
<meta http-equiv="Expires" content="0"/>
|
7 |
+
<meta charset="utf-8"/>
|
8 |
+
<meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1,user-scalable=0"/>
|
9 |
+
<meta name="theme-color" content="#ffffff"/>
|
10 |
+
<title>lama-cleaner - Image inpainting powered by SOTA AI model</title>
|
11 |
+
<script defer="defer" src="/static/js/main.ca662570.js"></script>
|
12 |
+
<link href="/static/css/main.e24c9a9b.css" rel="stylesheet">
|
13 |
+
</head>
|
14 |
+
<body>
|
15 |
+
<noscript>You need to enable JavaScript to run this app.</noscript>
|
16 |
+
<div id="root"></div>
|
17 |
+
</body>
|
18 |
+
</html>
|
app/build/static/css/main.e24c9a9b.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
:root{--blackA1:rgba(0,0,0,.012);--blackA2:rgba(0,0,0,.027);--blackA3:rgba(0,0,0,.047);--blackA4:rgba(0,0,0,.071);--blackA5:rgba(0,0,0,.09);--blackA6:rgba(0,0,0,.114);--blackA7:rgba(0,0,0,.141);--blackA8:rgba(0,0,0,.22);--blackA9:rgba(0,0,0,.439);--blackA10:rgba(0,0,0,.478);--blackA11:rgba(0,0,0,.565);--blackA12:rgba(0,0,0,.91);--mauve1:#fdfcfd;--mauve2:#f9f8f9;--mauve3:#f4f2f4;--mauve4:#eeedef;--mauve5:#e9e8ea;--mauve6:#e4e2e4;--mauve7:#dcdbdd;--mauve8:#c8c7cb;--mauve9:#908e96;--mauve10:#86848d;--mauve11:#6f6e77;--mauve12:#1a1523;--violet1:#fdfcfe;--violet2:#fbfaff;--violet3:#f5f2ff;--violet4:#ede9fe;--violet5:#e4defc;--violet6:#d7cff9;--violet7:#c4b8f3;--violet8:#aa99ec;--violet9:#6e56cf;--violet10:#644fc1;--violet11:#5746af;--violet12:#20134b;--page-bg:#fff;--page-bg-light:hsla(0,0%,100%,.5);--page-text-color:#040404;--yellow-accent:#fc0;--yellow-accent-light:#ffcc0055;--link-color:#000;--border-color:#eff1f4;--border-color-light:hsla(240,9%,43%,.5);--tooltip-bg:#e6e6ea;--tooltip-text-color:#000;--error-color:#ef4444;--success-color:#10b981;--editor-toolkit-bg:hsla(0,0%,100%,.5);--editor-options-bg:#e6e6ea;--options-text-color:var(--page-text-color);--editor-size-border-color:var(--border-color);--editor-toolkit-panel-border:0;--modal-bg:var(--page-bg);--modal-text-color:#000;--modal-hotkey-border-color:#000;--model-mask-bg:rgba(209,213,219,.4);--text-color:#040404;--text-color-gray:#6b6f76;--btn-text-color:var(--text-color);--btn-text-hover-color:#040404;--btn-border-color:#646478;--btn-primary-hover-bg:var(--yellow-accent);--animation-pulsing-bg:hsla(0,0%,100%,.5);--switch-root-background-color:#dfe1e4;--switch-thumb-color:var(--page-bg);--switch-thumb-checked-color:var(--page-bg);--slider-background-color:var(--switch-root-background-color);--tooltip-bg:var(--page-bg);--badge-background-color:#f1f3f5;--badge-color:#687076;--box-shadow:inset 0 0.5px hsla(0,0%,100%,.1),inset 0 1px 5px #f8f9fa,0px 0px 0px 0.5px #c1c8cd,0px 2px 1px -1px #c1c8cd,0 1px #c1c8cd;--croper-bg:rgba(0,0,0,.5);--tabs-active-color:#f0f3f9}@font-face{font-family:WorkSans;src:url(/static/media/WorkSans-Regular.bb287b894b27372d8ea7.ttf)}@font-face{font-family:WorkSans-Semibold;src:url(/static/media/WorkSans-SemiBold.1e98db4eb705b586728e.ttf)}@font-face{font-family:WorkSans-Bold;src:url(/static/media/WorkSans-Bold.2bea7a7f7d052c74da25.ttf)}@font-face{font-family:WorkSans-Black;src:url(/static/media/WorkSans-Black.67c2c5a144333953880b.ttf)}[data-theme=dark]{--page-bg:#040404;--page-bg-light:#04040488;--page-text-color:#f9f9f9;--yellow-accent:#fc0;--yellow-accent-light:#ffcc0055;--link-color:var(--yellow-accent);--border-color:#1e1e1e;--border-color-light:#666;--tooltip-bg:#212121;--tooltip-text-color:#d2d2d2;--editor-toolkit-bg:rgba(0,0,0,.5);--editor-options-bg:#212121;--options-text-color:var(--page-text-color);--editor-size-border-color:var(--yellow-accent);--editor-toolkit-panel-border:1px solid hsla(240,9%,43%,.4);--modal-bg:var(--page-bg);--modal-text-color:var(--page-text-color);--modal-hotkey-border-color:var(--page-text-color);--model-mask-bg:rgba(76,76,87,.4);--text-color:#fff;--text-color-gray:#c3c4c6;--btn-text-color:var(--text-color);--btn-text-hover-color:var(--page-bg);--btn-border-color:var(--yellow-accent);--btn-primary-hover-bg:var(--yellow-accent);--animation-pulsing-bg:#f0f0ff;--switch-root-background-color:#3c3f44;--switch-thumb-color:#1f2023;--switch-thumb-checked-color:#fff;--slider-background-color:var(--switch-root-background-color);--badge-background-color:#202425;--badge-color:#9ba1a6;--box-shadow:inset 0 0.5px hsla(0,0%,100%,.1),inset 0 1px 5px #1a1d1e,0px 0px 0px 0.5px #4c5155,0px 2px 1px -1px #4c5155,0 1px #4c5155;--croper-bg:rgba(0,0,0,.5);--tabs-active-color:#272831}@supports (color:hsl(0 0% 0%/0)){[data-theme=dark]{--tooltip-bg:#202425}}@-webkit-keyframes pulsing{0%{opacity:1}50%{background-color:hsla(0,0%,100%,.5);background-color:var(--animation-pulsing-bg);opacity:.75}to{opacity:1}}@keyframes pulsing{0%{opacity:1}50%{background-color:hsla(0,0%,100%,.5);background-color:var(--animation-pulsing-bg);opacity:.75}to{opacity:1}}@-webkit-keyframes opacityReveal{0%{opacity:0}to{opacity:1}}@keyframes opacityReveal{0%{opacity:0}to{opacity:1}}@-webkit-keyframes slideDown{0%{-webkit-transform:translateY(-100%);transform:translateY(-100%)}to{-webkit-transform:translateY(0);transform:translateY(0)}}@keyframes slideDown{0%{-webkit-transform:translateY(-100%);transform:translateY(-100%)}to{-webkit-transform:translateY(0);transform:translateY(0)}}@-webkit-keyframes slideUp{0%{-webkit-transform:translateY(100%);transform:translateY(100%)}to{-webkit-transform:translateY(0);transform:translateY(0)}}@keyframes slideUp{0%{-webkit-transform:translateY(100%);transform:translateY(100%)}to{-webkit-transform:translateY(0);transform:translateY(0)}}@-webkit-keyframes slideIn{0%{-webkit-transform:translateX(calc(100% + 25px));transform:translateX(calc(100% + 25px))}to{-webkit-transform:translateX(0);transform:translateX(0)}}@keyframes slideIn{0%{-webkit-transform:translateX(calc(100% + 25px));transform:translateX(calc(100% + 25px))}to{-webkit-transform:translateX(0);transform:translateX(0)}}@-webkit-keyframes spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(1turn);transform:rotate(1turn)}}@keyframes spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(1turn);transform:rotate(1turn)}}@-webkit-keyframes slideUpAndFade{0%{opacity:0;-webkit-transform:translateY(2px);transform:translateY(2px)}to{opacity:1;-webkit-transform:translateY(0);transform:translateY(0)}}@keyframes slideUpAndFade{0%{opacity:0;-webkit-transform:translateY(2px);transform:translateY(2px)}to{opacity:1;-webkit-transform:translateY(0);transform:translateY(0)}}@-webkit-keyframes slideDownAndFade{0%{opacity:0;-webkit-transform:translateY(-2px);transform:translateY(-2px)}to{opacity:1;-webkit-transform:translateY(0);transform:translateY(0)}}@keyframes slideDownAndFade{0%{opacity:0;-webkit-transform:translateY(-2px);transform:translateY(-2px)}to{opacity:1;-webkit-transform:translateY(0);transform:translateY(0)}}.lama-cleaner{background-color:#fff;background-color:var(--page-bg);color:#040404;color:var(--page-text-color);display:grid;grid-template-areas:"main-content";height:100vh;transition-duration:.2s;transition-property:background-color,color;transition-timing-function:repeat(2,ease-out);width:100vw}a{color:inherit;text-decoration:inherit}input:disabled{color:#6b6f76;color:var(--text-color-gray)}.editor-container{align-items:center;display:flex;height:100vh;justify-content:center;width:100vw}.react-transform-wrapper{display:grid!important;height:100%!important;width:100%!important}.editor-canvas-container{grid-row-gap:1rem;display:grid;grid-template-areas:"editor-content";row-gap:1rem}.editor-canvas{grid-area:editor-content;z-index:2}.original-image-container{display:grid;grid-area:editor-content;grid-template-areas:"original-image-content";pointer-events:none}.original-image-container img{grid-area:original-image-content}.original-image-container .editor-slider{background-color:#fc0;background-color:var(--yellow-accent);grid-area:original-image-content;height:100%;justify-self:end;transition:all .3s cubic-bezier(.4,0,.2,1);width:6px;z-index:2}.editor-canvas-loading{-webkit-animation:pulsing .75s infinite;animation:pulsing .75s infinite;pointer-events:none}.editor-toolkit-panel{align-items:center;-webkit-animation:slideUp .2s ease-out;animation:slideUp .2s ease-out;-webkit-backdrop-filter:blur(12px);backdrop-filter:blur(12px);background-color:hsla(0,0%,100%,.5);background-color:var(--page-bg-light);border:0;border:var(--editor-toolkit-panel-border);border-radius:3rem;bottom:.5rem;box-shadow:0 0 0 1px rgba(0,0,0,.102),0 3px 16px rgba(0,0,0,.078),0 2px 6px 1px rgba(0,0,0,.09);display:flex;gap:16px;justify-content:center;padding:.6rem 32px;position:fixed}@media screen and (max-width:767px){.editor-toolkit-panel{grid-template-areas:"toolkit-size-selector toolkit-size-selector" "toolkit-brush-slider toolkit-brush-slider" "toolkit-btns toolkit-btns";justify-items:center;padding:1rem 2rem;row-gap:2rem}}.editor-toolkit-panel .eyeicon-active{background-color:#fc0;background-color:var(--yellow-accent);color:#040404;color:var(--btn-text-hover-color)}.editor-brush-slider{grid-column-gap:1rem;align-items:center;-webkit-column-gap:1rem;column-gap:1rem;display:grid;grid-area:toolkit-brush-slider;grid-template-columns:repeat(2,-webkit-max-content);grid-template-columns:repeat(2,max-content);height:-webkit-max-content;height:max-content;-webkit-user-select:none;user-select:none}.editor-brush-slider input[type=range]{-webkit-appearance:none;appearance:none;background:transparent;border-color:transparent;color:transparent;cursor:pointer;width:100%}.editor-brush-slider input[type=range]:focus{outline:none}.editor-brush-slider input[type=range]::-webkit-slider-thumb{-webkit-appearance:none;background:#fc0;background:var(--yellow-accent);border:1px solid #000;border-radius:50%;height:1.2rem;margin-top:-.5rem;width:1.2rem;z-index:2}.editor-brush-slider input[type=range]::-webkit-slider-runnable-track{background:#dfe1e4;background:var(--slider-background-color);border-radius:2rem;height:.2rem}.editor-brush-slider input[type=range]::-moz-range-track{background:#dfe1e4;background:var(--slider-background-color);border-radius:2rem}.editor-brush-slider input[type=range]::-moz-range-progress{background:#fc0;background:var(--yellow-accent)}.editor-toolkit-btns{display:flex;gap:12px}.brush-shape{background-color:rgba(255,204,0,.733);border:1px solid #fc0;border:1px solid var(--yellow-accent);border-radius:50%;pointer-events:none;position:absolute}.file-manager-modal{color:#040404;color:var(--text-color);height:90%;width:80%}.react-photo-album.react-photo-album--columns{height:80vh}.react-photo-album--photo{border:1px solid transparent;border-radius:8px;transition:visibility .25s ease-in,-webkit-transform .25s;transition:transform .25s,visibility .25s ease-in;transition:transform .25s,visibility .25s ease-in,-webkit-transform .25s;-webkit-user-select:none;user-select:none}.react-photo-album--photo:hover{border:1px solid #eff1f4;border:1px solid var(--border-color);-webkit-transform:scale(1.03);transform:scale(1.03)}.ScrollAreaRoot{--scrollbar-size:10px;border-radius:4px;overflow:hidden}.ScrollAreaViewport{border-radius:inherit;height:100%;width:100%}.ScrollAreaScrollbar{display:flex;padding:2px;touch-action:none;transition:background .16s ease-out;-webkit-user-select:none;user-select:none}.ScrollAreaScrollbar:hover{background:var(--blackA8)}.ScrollAreaScrollbar[data-orientation=vertical]{width:var(--scrollbar-size)}.ScrollAreaScrollbar[data-orientation=horizontal]{flex-direction:column;height:var(--scrollbar-size)}.ScrollAreaThumb{background:var(--mauve10);border-radius:var(--scrollbar-size);flex:1 1;position:relative}.ScrollAreaThumb:before{content:"";height:100%;left:50%;min-height:44px;min-width:44px;position:absolute;top:50%;-webkit-transform:translate(-50%,-50%);transform:translate(-50%,-50%);width:100%}.ScrollAreaCorner{background:var(--blackA8)}.file-search-input{border:1px solid #eff1f4;border:1px solid var(--border-color);border-radius:12px;height:32px;padding-left:30px;width:250px}.sort-btn-inactive svg{opacity:.5}button,fieldset,input{all:unset}.TabsRoot{align-self:flex-start;background-color:#fff;background-color:var(--page-bg);display:flex;flex-direction:column;gap:8px}.TabsList{border:1px solid #eff1f4;border:1px solid var(--border-color);border-radius:12px;flex-direction:row;gap:6px;padding:4px}.TabsList,.TabsTrigger{background-color:#fff;background-color:var(--page-bg);display:flex;justify-content:flex-start}.TabsTrigger{align-items:center;border-radius:8px;color:#000;color:var(--modal-text-color);font-family:inherit;font-size:15px;line-height:1;padding:8px;-webkit-user-select:none;user-select:none}.TabsTrigger:hover,.TabsTrigger[data-state=active]{background-color:#f0f3f9;background-color:var(--tabs-active-color)}.TabsTrigger:focus{position:relative}.TabsContent{background-color:#fff;background-color:var(--page-bg);outline:none;width:100%}.TabsContent[data-state=active]{display:flex;flex-direction:column;gap:14px}.landing-page{grid-row-gap:2rem;display:grid;grid-auto-rows:-webkit-max-content;grid-auto-rows:max-content;justify-items:center;place-self:center;row-gap:2rem}@media screen and (max-width:767px){.landing-page{padding:1rem}}.landing-page h1{font-size:1.4rem;text-align:center}@media screen and (max-width:767px){.landing-page h1{font-size:1.2rem}}.landing-page a{color:#000;color:var(--link-color)}.landing-file-selector{display:grid}header{align-items:center;-webkit-backdrop-filter:blur(12px);backdrop-filter:blur(12px);background-color:hsla(0,0%,100%,.5);background-color:var(--page-bg-light);border-bottom:1px solid hsla(240,9%,43%,.2);display:flex;height:60px;justify-content:space-between;padding:1rem 1.5rem;position:absolute;top:0;width:100%;z-index:20}.shortcuts{z-index:1}.header-icons-wrapper{gap:12px}.header-icons,.header-icons-wrapper{align-items:center;display:flex;justify-content:center;justify-self:end}.header-icons{gap:6px}.mask-preview{border:1px solid #eff1f4;border:1px solid var(--border-color);border-radius:8px;margin-left:20px;margin-top:30px;max-height:400px;max-width:400px}.prompt-wrapper{display:flex;gap:12px}.prompt-wrapper input{all:unset;border-radius:.5rem;border-width:0;min-width:600px;outline:1px solid #eff1f4;outline:1px solid var(--border-color);padding:0 .8rem}.prompt-wrapper input:focus-visible{border-width:0;outline:1px solid #fc0;outline:1px solid var(--yellow-accent)}.theme-toggle-ui{transition:all .2s ease-in;-webkit-user-select:none;user-select:none;z-index:10}.theme-toggle-ui .theme-btn{align-items:center;cursor:pointer;display:flex;justify-content:center;outline:none}.theme-toggle-ui .theme-btn svg{height:22px;width:22px}.modal-shortcuts{background-color:#fff;background-color:var(--modal-bg);box-shadow:0 0 20px rgba(0,0,40,.2);color:#000;color:var(--modal-text-color);grid-area:main-content}@media screen and (max-width:767px){.modal-shortcuts{-webkit-animation:slideDown .2s ease-out;animation:slideDown .2s ease-out;display:grid;height:auto;width:100%}}.shortcut-options{display:flex;flex-direction:row;gap:48px}.shortcut-options .shortcut-option{grid-column-gap:2rem;align-items:center;-webkit-column-gap:2rem;column-gap:2rem;display:grid;grid-template-columns:repeat(2,auto)}@media screen and (max-width:767px){.shortcut-options .shortcut-option{-webkit-column-gap:0;column-gap:0;row-gap:.6rem}}.shortcut-options .shortcut-key{background-color:#fff;background-color:var(--page-bg);border-radius:6px;box-shadow:inset 0 .5px hsla(0,0%,100%,.1),inset 0 1px 5px #f8f9fa,0 0 0 .5px #c1c8cd,0 2px 1px -1px #c1c8cd,0 1px #c1c8cd;box-shadow:var(--box-shadow);box-sizing:border-box;color:#000;color:var(--modal-text-color);font-family:inherit;font-weight:400;justify-self:end;line-height:1.5;padding-left:.5rem;padding-right:.5rem;text-shadow:0 0 1px hsla(0,0%,100%,.5);-webkit-user-select:none;user-select:none;white-space:nowrap;width:-webkit-max-content;width:max-content}@media screen and (max-width:767px){.shortcut-options .shortcut-key{padding:.2rem .4rem}}.shortcut-options .shortcut-description{font-size:.95rem;justify-self:start;text-align:left}@media screen and (max-width:767px){.shortcut-options .shortcut-description{justify-self:start;text-align:left;width:auto}}.shortcut-options-column{gap:12px;width:320px}.setting-block,.setting-block .option-desc,.shortcut-options-column{display:flex;flex-direction:column}.setting-block .option-desc{border:1px solid #eff1f4;border:1px solid var(--border-color);border-radius:.3rem;color:#6b6f76;color:var(--text-color-gray);gap:8px;margin-top:12px;padding:1rem}.setting-block .option-desc .sub-setting-block{color:#040404;color:var(--text-color)}.setting-block .option-desc svg{color:#6b6f76;color:var(--text-color-gray)}.setting-block-content{align-items:center;display:flex;gap:12rem;justify-content:space-between}.setting-block-content-v{align-items:flex-start;display:flex;flex-direction:column;gap:1rem;justify-content:flex-start}.setting-block-content-title{align-items:center;display:flex;flex-direction:row;gap:8px;justify-content:center}.setting-block-desc{color:#6b6f76;color:var(--text-color-gray);font-size:1rem;margin-top:8px}.hd-setting-block .inline-tip{color:#040404;color:var(--text-color);cursor:pointer;display:inline}.model-desc-link{border-radius:999px;color:#687076;color:var(--badge-color);display:flex;justify-items:center;padding-left:5px;padding-right:5px;text-decoration:none}.modal-setting{background-color:#fff;background-color:var(--modal-bg);box-shadow:0 0 20px rgba(0,0,40,.2);color:#000;color:var(--modal-text-color);width:680px}@media screen and (max-width:767px){.modal-setting{-webkit-animation:slideDown .2s ease-out;animation:slideDown .2s ease-out;display:grid;height:auto;margin-top:-11rem;width:100%}}.folder-path-block{display:flex;flex-direction:column;gap:12px}.folder-path{border-radius:6px;border-width:0;outline:1px solid #eff1f4;outline:1px solid var(--border-color);padding:.3rem .5rem;width:95%}.folder-path:focus-visible{border-width:0;outline:1px solid #fc0;outline:1px solid var(--yellow-accent)}.side-panel{border-color:#eff1f4;border-color:var(--border-color);border-radius:.8rem;border-style:solid;border-width:1px;padding:.3rem;position:absolute;right:1.5rem;top:68px;z-index:4}.side-panel-trigger{border:0;font-family:WorkSans,sans-serif;font-size:16px}.side-panel-content{background-color:#fff;background-color:var(--page-bg);border-color:#eff1f4;border-color:var(--border-color);border-radius:.8rem;border-style:solid;border-width:1px;color:#040404;color:var(--text-color);display:flex;flex-direction:column;font-family:WorkSans,sans-serif;font-size:14px;gap:12px;padding:1rem;position:relative;right:1.5rem;top:1rem;z-index:9}.side-panel-content .setting-block-content{gap:1rem}.negative-prompt{all:unset;border-radius:.5rem;border-width:0;max-width:200px;min-height:150px;outline:1px solid #eff1f4;outline:1px solid var(--border-color);padding:12px .8rem;width:100%}.negative-prompt:focus-visible{border-width:0;outline:1px solid #fc0;outline:1px solid var(--yellow-accent)}.negative-prompt:-webkit-input-placeholder{padding-top:10px}.negative-prompt:-moz-input-placeholder{padding-top:10px}.negative-prompt:-ms-input-placeholder{padding-top:10px}.resize-title-tile{color:#6b6f76;color:var(--text-color-gray);font-size:.5rem;width:86px}.crop-border{outline-color:#fc0;outline-color:var(--yellow-accent);outline-style:dashed}.info-bar{align-items:center;background-color:#fff;background-color:var(--page-bg);border:0;border:var(--editor-toolkit-panel-border);border-radius:9999px;box-shadow:0 0 0 1px rgba(0,0,0,.102),0 3px 16px rgba(0,0,0,.078),0 2px 6px 1px rgba(0,0,0,.09);color:#040404;color:var(--text-color);display:flex;font-size:1rem;gap:12px;justify-content:center;padding:.2rem .8rem;pointer-events:auto;position:absolute}.info-bar:hover{cursor:move}.croper-wrapper{height:100%;overflow:hidden;position:absolute;width:100%}.croper,.croper-wrapper{pointer-events:none;z-index:2}.croper{bottom:0;box-shadow:0 0 0 9999px rgba(0,0,0,.5);left:0;position:relative;right:0;top:0}.drag-bar{pointer-events:auto;position:absolute}.drag-bar.ord-top{cursor:ns-resize;height:12px;left:0;margin-top:-6px;top:0;width:100%}.drag-bar.ord-right{cursor:ew-resize;height:100%;margin-right:-6px;right:0;top:0;width:12px}.drag-bar.ord-bottom{bottom:0;cursor:ns-resize;height:12px;left:0;margin-bottom:-6px;width:100%}.drag-bar.ord-left{cursor:ew-resize;height:100%;left:0;margin-left:-6px;top:0;width:12px}.drag-handle{background-color:#ffcc0055;background-color:var(--yellow-accent-light);border:2px solid #fc0;border:2px solid var(--yellow-accent);content:"";display:block;height:12px;pointer-events:auto;position:absolute;width:12px;z-index:4}.drag-handle:hover{background-color:#fc0;background-color:var(--yellow-accent)}.drag-handle.ord-topleft{cursor:nw-resize;left:-7px;top:-7px}.drag-handle.ord-topright{cursor:ne-resize;right:-7px;top:-7px}.drag-handle.ord-bottomright{bottom:-7px;cursor:se-resize;right:-7px}.drag-handle.ord-bottomleft{bottom:-7px;cursor:sw-resize;left:-7px}.drag-handle.ord-bottom,.drag-handle.ord-top{cursor:ns-resize;left:calc(50% - 6px)}.drag-handle.ord-top{top:-7px}.drag-handle.ord-bottom{bottom:-7px}.drag-handle.ord-left,.drag-handle.ord-right{cursor:ew-resize;top:calc(50% - 6px)}.drag-handle.ord-left{left:-7px}.drag-handle.ord-right{right:-7px}.interactive-seg-wrapper{height:100%;overflow:hidden;pointer-events:none;position:absolute;width:100%;z-index:2}.interactive-seg-wrapper .click-item{border-radius:50%;height:8px;position:absolute;width:8px}.interactive-seg-wrapper .click-item-positive{background-color:rgba(21,215,121,.936);outline:6px solid rgba(98,255,179,.31)}.interactive-seg-wrapper .click-item-negative{background-color:rgba(237,49,55,.942);outline:6px solid rgba(255,89,95,.31)}.interactive-seg-confirm-actions{background-color:#fff;background-color:var(--page-bg);border-color:#eff1f4;border-color:var(--border-color);border-radius:16px;border-style:solid;border-width:1px;padding:8px;position:absolute;top:68px;z-index:5}.interactive-seg-confirm-actions .action-buttons{align-items:center;display:flex;gap:8px;justify-content:center}@-webkit-keyframes pulse{to{box-shadow:0 0 0 14px rgba(21,215,121,0)}}@keyframes pulse{to{box-shadow:0 0 0 14px rgba(21,215,121,0)}}.interactive-seg-cursor{-webkit-animation:pulse 1.5s cubic-bezier(.66,0,0,1) infinite;animation:pulse 1.5s cubic-bezier(.66,0,0,1) infinite;background-color:rgba(21,215,121,.936);border-radius:50%;box-shadow:0 0 0 0 rgba(21,215,121,.936);color:rgba(234,255,240,.98);height:20px;pointer-events:none;position:absolute;width:20px}.file-select-label{border:2px dashed #eff1f4;border:2px dashed var(--border-color);border-radius:.5rem;cursor:pointer;display:grid;min-width:600px}@media screen and (max-width:767px){.file-select-label{min-width:300px}}.file-select-label .file-select-label-hover,.file-select-label:hover{background-color:#fc0;background-color:var(--yellow-accent);color:#000}.file-select-container{display:grid;height:100%;padding:4rem;width:100%}.file-select-container input{display:none}.file-select-message{font-family:WorkSans;text-align:center}.btn-primary{grid-column-gap:1rem;background-color:#fff;background-color:var(--page-bg);border-radius:.5rem;color:#040404;color:var(--btn-text-color);-webkit-column-gap:1rem;column-gap:1rem;cursor:pointer;display:grid;font-family:WorkSans,sans-serif;grid-auto-flow:column;padding:.5rem;place-items:center;width:-webkit-max-content;width:max-content;z-index:1}.btn-primary:hover{background-color:#fc0;background-color:var(--btn-primary-hover-bg);color:#040404;color:var(--btn-text-hover-color)}.btn-primary svg{height:auto;width:20px}.btn-primary-disabled{background-color:#fff;background-color:var(--page-bg);opacity:.5;pointer-events:none}.btn-border{border-color:#646478;border-color:var(--btn-border-color);border-style:solid;border-width:1px}.modal-mask{-webkit-backdrop-filter:blur(12px);backdrop-filter:blur(12px);background-color:rgba(209,213,219,.4);background-color:var(--model-mask-bg);inset:0;position:fixed;z-index:9998}@media(prefers-reduced-motion:no-preference){.modal-mask{-webkit-animation:opacityReveal .15s cubic-bezier(.16,1,.3,1) forwards;animation:opacityReveal .15s cubic-bezier(.16,1,.3,1) forwards}}@-webkit-keyframes contentShow{0%{opacity:0;-webkit-transform:translate(-50%,-48%) scale(.96);transform:translate(-50%,-48%) scale(.96)}to{opacity:1;-webkit-transform:translate(-50%,-50%) scale(1);transform:translate(-50%,-50%) scale(1)}}@keyframes contentShow{0%{opacity:0;-webkit-transform:translate(-50%,-48%) scale(.96);transform:translate(-50%,-48%) scale(.96)}to{opacity:1;-webkit-transform:translate(-50%,-50%) scale(1);transform:translate(-50%,-50%) scale(1)}}.modal{background-color:#fff;background-color:var(--page-bg);border-radius:.95rem;display:flex;flex-direction:column;gap:16px;left:50%;padding:25px;place-self:center;position:fixed;top:50%;-webkit-transform:translate(-50%,-50%);transform:translate(-50%,-50%);z-index:9999}.modal:focus{outline:none}.modal .modal-header{align-items:center;display:grid;grid-template-columns:repeat(2,auto)}.modal .modal-header .btn-primary{justify-self:end}@media(prefers-reduced-motion:no-preference){.modal{-webkit-animation:contentShow .15s cubic-bezier(.16,1,.3,1) forwards;animation:contentShow .15s cubic-bezier(.16,1,.3,1) forwards}}.select-trigger{all:unset;align-items:center;background-color:#fff;background-color:var(--page-bg);border:1px solid #eff1f4;border:1px solid var(--border-color);border-radius:.5rem;color:#040404;color:var(--options-text-color);display:inline-flex;gap:8px;height:32px;justify-content:space-between;padding:0 .8rem}.select-trigger svg{height:1rem;margin-top:.25rem;width:1rem}.select-trigger:hover{border-color:#fc0;border-color:var(--yellow-accent)}.select-trigger:disabled{border-color:#eff1f4;border-color:var(--border-color);color:#eff1f4;color:var(--border-color)}.select-content{background-color:#fff;background-color:var(--page-bg);border-radius:.5rem;overflow:hidden}.select-viewport{border:1px solid #eff1f4;border:1px solid var(--border-color);border-radius:.5rem;padding:5px}.select-item{all:unset;align-items:center;background-color:#fff;background-color:var(--page-bg);border-radius:.5rem;color:#040404;color:var(--options-text-color);display:flex;padding:6px 6px 6px 25px;position:relative;-webkit-user-select:none;user-select:none}.select-item:focus{background-color:#fc0;background-color:var(--yellow-accent);color:#040404;color:var(--btn-text-hover-color)}.select-item-indicator{align-items:center;display:inline-flex;justify-content:center;left:0;padding-right:4px;position:absolute;width:25px}.switch-root{-webkit-tap-highlight-color:rgba(0,0,0,0);all:"unset";background-color:#dfe1e4;background-color:var(--switch-root-background-color);border:none;border-radius:9999px;height:25px;position:relative;transition:background-color .1s;width:42px}.switch-root:focus-visible{outline:none}.switch-root[data-state=checked]{background-color:#fc0;background-color:var(--yellow-accent)}.switch-thumb{background-color:#fff;background-color:var(--switch-thumb-color);border-radius:9999px;display:block;height:17px;-webkit-transform:translateX(4px);transform:translateX(4px);transition:-webkit-transform .1s;transition:transform .1s;transition:transform .1s,-webkit-transform .1s;width:17px;will-change:transform}.switch-thumb[data-state=checked]{background-color:#fff;background-color:var(--switch-thumb-checked-color);outline:1px solid hsla(240,9%,43%,.5);-webkit-transform:translateX(21px);transform:translateX(21px)}.number-input{all:unset;border-radius:.5rem;flex:1 0 auto;height:32px;outline:1px solid #eff1f4;outline:1px solid var(--border-color);padding:0 .8rem;text-align:right}.number-input:focus-visible{outline:1px solid #fc0;outline:1px solid var(--yellow-accent)}.number-input:disabled{color:#eff1f4;color:var(--border-color)}.toast-viewpoint{bottom:48px;display:flex;flex-direction:row;gap:10px;margin:0;max-width:100vw;padding:25px;position:fixed;right:1.5rem;z-index:999999}.toast-viewpoint:focus-visible{outline:none}.toast-root{align-items:center;background-color:#fff;background-color:var(--page-bg);border:1px solid hsla(240,9%,43%,.5);border:1px solid var(--border-color-light);border-radius:.6rem;display:flex;gap:12px;padding:15px}.toast-root[data-state=open]{-webkit-animation:slideIn .15s cubic-bezier(.16,1,.3,1);animation:slideIn .15s cubic-bezier(.16,1,.3,1)}.toast-root[data-state=close]{-webkit-animation:opacityReveal .1s ease-in forwards;animation:opacityReveal .1s ease-in forwards}.toast-root[data-state=cancel]{-webkit-animation:transform .1s ease-out;animation:transform .1s ease-out;-webkit-transform:translateX(0);transform:translateX(0)}.toast-root.error{border:1px solid #ef4444;border:1px solid var(--error-color)}.toast-root.success{border:1px solid #10b981;border:1px solid var(--success-color)}.error-icon{color:#ef4444;color:var(--error-color);height:24px;width:24px}.success-icon{color:#10b981;color:var(--success-color);height:24px;width:24px}.loading-icon{-webkit-animation-duration:1.5s;animation-duration:1.5s;-webkit-animation-iteration-count:infinite;animation-iteration-count:infinite;-webkit-animation-name:spin;animation-name:spin;-webkit-animation-timing-function:linear;animation-timing-function:linear;-webkit-transform-origin:center center;transform-origin:center center}.loading-icon,.toast-desc,.toast-icon{align-items:center;display:flex}.toast-desc{color:#040404;color:var(--text-color);margin:0;min-width:240px}.tooltip-trigger{align-items:center;display:flex;justify-content:center}.tooltip-content{background-color:#fff;background-color:var(--tooltip-bg);border-radius:4px;box-shadow:0 10px 38px -10px rgba(14,18,22,.35),0 10px 20px -15px rgba(14,18,22,.2);color:#000;color:var(--tooltip-text-color);padding:10px 15px}@media(prefers-reduced-motion:no-preference){.tooltip-content{-webkit-animation-duration:.4s;animation-duration:.4s;-webkit-animation-fill-mode:forwards;animation-fill-mode:forwards;-webkit-animation-timing-function:cubic-bezier(.16,1,.3,1);animation-timing-function:cubic-bezier(.16,1,.3,1);will-change:transform,opacity}.tooltip-content[data-state=delayed-open][data-side=top]{-webkit-animation-name:slideDownAndFade;animation-name:slideDownAndFade}.tooltip-content[data-state=delayed-open][data-side=bottom]{-webkit-animation-name:slideUpAndFade;animation-name:slideUpAndFade}}.tooltip-arrow{fill:#fff;fill:var(--tooltip-bg)}*,:after,:before{box-sizing:border-box;margin:0;padding:0}body,html{font-family:WorkSans,sans-serif}
|
app/build/static/js/main.a2cdd7a2.js
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app/build/static/js/main.a2cdd7a2.js.LICENSE.txt
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
object-assign
|
3 |
+
(c) Sindre Sorhus
|
4 |
+
@license MIT
|
5 |
+
*/
|
6 |
+
|
7 |
+
/*! regenerator-runtime -- Copyright (c) 2014-present, Facebook, Inc. -- license (MIT): https://github.com/facebook/regenerator/blob/main/LICENSE */
|
8 |
+
|
9 |
+
/**
|
10 |
+
* @license
|
11 |
+
* Lodash <https://lodash.com/>
|
12 |
+
* Copyright OpenJS Foundation and other contributors <https://openjsf.org/>
|
13 |
+
* Released under MIT license <https://lodash.com/license>
|
14 |
+
* Based on Underscore.js 1.8.3 <http://underscorejs.org/LICENSE>
|
15 |
+
* Copyright Jeremy Ashkenas, DocumentCloud and Investigative Reporters & Editors
|
16 |
+
*/
|
17 |
+
|
18 |
+
/** @license React v0.20.2
|
19 |
+
* scheduler.production.min.js
|
20 |
+
*
|
21 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
22 |
+
*
|
23 |
+
* This source code is licensed under the MIT license found in the
|
24 |
+
* LICENSE file in the root directory of this source tree.
|
25 |
+
*/
|
26 |
+
|
27 |
+
/** @license React v17.0.2
|
28 |
+
* react-dom.production.min.js
|
29 |
+
*
|
30 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
31 |
+
*
|
32 |
+
* This source code is licensed under the MIT license found in the
|
33 |
+
* LICENSE file in the root directory of this source tree.
|
34 |
+
*/
|
35 |
+
|
36 |
+
/** @license React v17.0.2
|
37 |
+
* react-jsx-runtime.production.min.js
|
38 |
+
*
|
39 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
40 |
+
*
|
41 |
+
* This source code is licensed under the MIT license found in the
|
42 |
+
* LICENSE file in the root directory of this source tree.
|
43 |
+
*/
|
44 |
+
|
45 |
+
/** @license React v17.0.2
|
46 |
+
* react.production.min.js
|
47 |
+
*
|
48 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
49 |
+
*
|
50 |
+
* This source code is licensed under the MIT license found in the
|
51 |
+
* LICENSE file in the root directory of this source tree.
|
52 |
+
*/
|
53 |
+
|
54 |
+
/**!
|
55 |
+
* FlexSearch.js v0.7.21 (Bundle)
|
56 |
+
* Copyright 2018-2021 Nextapps GmbH
|
57 |
+
* Author: Thomas Wilkerling
|
58 |
+
* Licence: Apache-2.0
|
59 |
+
* https://github.com/nextapps-de/flexsearch
|
60 |
+
*/
|
app/build/static/js/main.ca662570.js
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app/build/static/js/main.ca662570.js.LICENSE.txt
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
object-assign
|
3 |
+
(c) Sindre Sorhus
|
4 |
+
@license MIT
|
5 |
+
*/
|
6 |
+
|
7 |
+
/*! regenerator-runtime -- Copyright (c) 2014-present, Facebook, Inc. -- license (MIT): https://github.com/facebook/regenerator/blob/main/LICENSE */
|
8 |
+
|
9 |
+
/**
|
10 |
+
* @license
|
11 |
+
* Lodash <https://lodash.com/>
|
12 |
+
* Copyright OpenJS Foundation and other contributors <https://openjsf.org/>
|
13 |
+
* Released under MIT license <https://lodash.com/license>
|
14 |
+
* Based on Underscore.js 1.8.3 <http://underscorejs.org/LICENSE>
|
15 |
+
* Copyright Jeremy Ashkenas, DocumentCloud and Investigative Reporters & Editors
|
16 |
+
*/
|
17 |
+
|
18 |
+
/** @license React v0.20.2
|
19 |
+
* scheduler.production.min.js
|
20 |
+
*
|
21 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
22 |
+
*
|
23 |
+
* This source code is licensed under the MIT license found in the
|
24 |
+
* LICENSE file in the root directory of this source tree.
|
25 |
+
*/
|
26 |
+
|
27 |
+
/** @license React v17.0.2
|
28 |
+
* react-dom.production.min.js
|
29 |
+
*
|
30 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
31 |
+
*
|
32 |
+
* This source code is licensed under the MIT license found in the
|
33 |
+
* LICENSE file in the root directory of this source tree.
|
34 |
+
*/
|
35 |
+
|
36 |
+
/** @license React v17.0.2
|
37 |
+
* react-jsx-runtime.production.min.js
|
38 |
+
*
|
39 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
40 |
+
*
|
41 |
+
* This source code is licensed under the MIT license found in the
|
42 |
+
* LICENSE file in the root directory of this source tree.
|
43 |
+
*/
|
44 |
+
|
45 |
+
/** @license React v17.0.2
|
46 |
+
* react.production.min.js
|
47 |
+
*
|
48 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
49 |
+
*
|
50 |
+
* This source code is licensed under the MIT license found in the
|
51 |
+
* LICENSE file in the root directory of this source tree.
|
52 |
+
*/
|
53 |
+
|
54 |
+
/**!
|
55 |
+
* FlexSearch.js v0.7.21 (Bundle)
|
56 |
+
* Copyright 2018-2021 Nextapps GmbH
|
57 |
+
* Author: Thomas Wilkerling
|
58 |
+
* Licence: Apache-2.0
|
59 |
+
* https://github.com/nextapps-de/flexsearch
|
60 |
+
*/
|
app/build/static/js/main.ed69b879.js
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app/build/static/js/main.ed69b879.js.LICENSE.txt
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
object-assign
|
3 |
+
(c) Sindre Sorhus
|
4 |
+
@license MIT
|
5 |
+
*/
|
6 |
+
|
7 |
+
/*! regenerator-runtime -- Copyright (c) 2014-present, Facebook, Inc. -- license (MIT): https://github.com/facebook/regenerator/blob/main/LICENSE */
|
8 |
+
|
9 |
+
/**
|
10 |
+
* @license
|
11 |
+
* Lodash <https://lodash.com/>
|
12 |
+
* Copyright OpenJS Foundation and other contributors <https://openjsf.org/>
|
13 |
+
* Released under MIT license <https://lodash.com/license>
|
14 |
+
* Based on Underscore.js 1.8.3 <http://underscorejs.org/LICENSE>
|
15 |
+
* Copyright Jeremy Ashkenas, DocumentCloud and Investigative Reporters & Editors
|
16 |
+
*/
|
17 |
+
|
18 |
+
/** @license React v0.20.2
|
19 |
+
* scheduler.production.min.js
|
20 |
+
*
|
21 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
22 |
+
*
|
23 |
+
* This source code is licensed under the MIT license found in the
|
24 |
+
* LICENSE file in the root directory of this source tree.
|
25 |
+
*/
|
26 |
+
|
27 |
+
/** @license React v17.0.2
|
28 |
+
* react-dom.production.min.js
|
29 |
+
*
|
30 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
31 |
+
*
|
32 |
+
* This source code is licensed under the MIT license found in the
|
33 |
+
* LICENSE file in the root directory of this source tree.
|
34 |
+
*/
|
35 |
+
|
36 |
+
/** @license React v17.0.2
|
37 |
+
* react-jsx-runtime.production.min.js
|
38 |
+
*
|
39 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
40 |
+
*
|
41 |
+
* This source code is licensed under the MIT license found in the
|
42 |
+
* LICENSE file in the root directory of this source tree.
|
43 |
+
*/
|
44 |
+
|
45 |
+
/** @license React v17.0.2
|
46 |
+
* react.production.min.js
|
47 |
+
*
|
48 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
49 |
+
*
|
50 |
+
* This source code is licensed under the MIT license found in the
|
51 |
+
* LICENSE file in the root directory of this source tree.
|
52 |
+
*/
|
53 |
+
|
54 |
+
/**!
|
55 |
+
* FlexSearch.js v0.7.21 (Bundle)
|
56 |
+
* Copyright 2018-2021 Nextapps GmbH
|
57 |
+
* Author: Thomas Wilkerling
|
58 |
+
* Licence: Apache-2.0
|
59 |
+
* https://github.com/nextapps-de/flexsearch
|
60 |
+
*/
|
app/build/static/media/WorkSans-Black.67c2c5a144333953880b.ttf
ADDED
Binary file (192 kB). View file
|
|
app/build/static/media/WorkSans-Bold.2bea7a7f7d052c74da25.ttf
ADDED
Binary file (193 kB). View file
|
|
app/build/static/media/WorkSans-Regular.bb287b894b27372d8ea7.ttf
ADDED
Binary file (192 kB). View file
|
|
app/build/static/media/WorkSans-SemiBold.1e98db4eb705b586728e.ttf
ADDED
Binary file (193 kB). View file
|
|
app/build/static/media/coffee-machine-lineal.ee32631219cc3986f861.gif
ADDED
benchmark.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# #!/usr/bin/env python3
|
2 |
+
#
|
3 |
+
# import argparse
|
4 |
+
# import os
|
5 |
+
# import time
|
6 |
+
# import numpy as np
|
7 |
+
# import nvidia_smi
|
8 |
+
# import psutil
|
9 |
+
# import torch
|
10 |
+
#
|
11 |
+
# from model_manager import ModelManager
|
12 |
+
# from schema import Config, HDStrategy, SDSampler
|
13 |
+
#
|
14 |
+
# try:
|
15 |
+
# torch._C._jit_override_can_fuse_on_cpu(False)
|
16 |
+
# torch._C._jit_override_can_fuse_on_gpu(False)
|
17 |
+
# torch._C._jit_set_texpr_fuser_enabled(False)
|
18 |
+
# torch._C._jit_set_nvfuser_enabled(False)
|
19 |
+
# except:
|
20 |
+
# pass
|
21 |
+
#
|
22 |
+
# NUM_THREADS = str(4)
|
23 |
+
#
|
24 |
+
# os.environ["OMP_NUM_THREADS"] = NUM_THREADS
|
25 |
+
# os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
|
26 |
+
# os.environ["MKL_NUM_THREADS"] = NUM_THREADS
|
27 |
+
# os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
|
28 |
+
# os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
|
29 |
+
# if os.environ.get("CACHE_DIR"):
|
30 |
+
# os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
|
31 |
+
#
|
32 |
+
#
|
33 |
+
# def run_model(model, size):
|
34 |
+
# # RGB
|
35 |
+
# image = np.random.randint(0, 256, (size[0], size[1], 3)).astype(np.uint8)
|
36 |
+
# mask = np.random.randint(0, 255, size).astype(np.uint8)
|
37 |
+
#
|
38 |
+
# config = Config(
|
39 |
+
# ldm_steps=2,
|
40 |
+
# hd_strategy=HDStrategy.ORIGINAL,
|
41 |
+
# hd_strategy_crop_margin=128,
|
42 |
+
# hd_strategy_crop_trigger_size=128,
|
43 |
+
# hd_strategy_resize_limit=128,
|
44 |
+
# prompt="a fox is sitting on a bench",
|
45 |
+
# sd_steps=5,
|
46 |
+
# sd_sampler=SDSampler.ddim
|
47 |
+
# )
|
48 |
+
# model(image, mask, config)
|
49 |
+
#
|
50 |
+
#
|
51 |
+
# def benchmark(model, times: int, empty_cache: bool):
|
52 |
+
# sizes = [(512, 512)]
|
53 |
+
#
|
54 |
+
# nvidia_smi.nvmlInit()
|
55 |
+
# device_id = 0
|
56 |
+
# handle = nvidia_smi.nvmlDeviceGetHandleByIndex(device_id)
|
57 |
+
#
|
58 |
+
# def format(metrics):
|
59 |
+
# return f"{np.mean(metrics):.2f} ± {np.std(metrics):.2f}"
|
60 |
+
#
|
61 |
+
# process = psutil.Process(os.getpid())
|
62 |
+
# # 每个 size 给出显存和内存占用的指标
|
63 |
+
# for size in sizes:
|
64 |
+
# torch.cuda.empty_cache()
|
65 |
+
# time_metrics = []
|
66 |
+
# cpu_metrics = []
|
67 |
+
# memory_metrics = []
|
68 |
+
# gpu_memory_metrics = []
|
69 |
+
# for _ in range(times):
|
70 |
+
# start = time.time()
|
71 |
+
# run_model(model, size)
|
72 |
+
# torch.cuda.synchronize()
|
73 |
+
#
|
74 |
+
# # cpu_metrics.append(process.cpu_percent())
|
75 |
+
# time_metrics.append((time.time() - start) * 1000)
|
76 |
+
# memory_metrics.append(process.memory_info().rss / 1024 / 1024)
|
77 |
+
# gpu_memory_metrics.append(nvidia_smi.nvmlDeviceGetMemoryInfo(handle).used / 1024 / 1024)
|
78 |
+
#
|
79 |
+
# print(f"size: {size}".center(80, "-"))
|
80 |
+
# # print(f"cpu: {format(cpu_metrics)}")
|
81 |
+
# print(f"latency: {format(time_metrics)}ms")
|
82 |
+
# print(f"memory: {format(memory_metrics)} MB")
|
83 |
+
# print(f"gpu memory: {format(gpu_memory_metrics)} MB")
|
84 |
+
#
|
85 |
+
# nvidia_smi.nvmlShutdown()
|
86 |
+
#
|
87 |
+
#
|
88 |
+
# def get_args_parser():
|
89 |
+
# parser = argparse.ArgumentParser()
|
90 |
+
# parser.add_argument("--name")
|
91 |
+
# parser.add_argument("--device", default="cuda", type=str)
|
92 |
+
# parser.add_argument("--times", default=10, type=int)
|
93 |
+
# parser.add_argument("--empty-cache", action="store_true")
|
94 |
+
# return parser.parse_args()
|
95 |
+
#
|
96 |
+
#
|
97 |
+
# if __name__ == "__main__":
|
98 |
+
# args = get_args_parser()
|
99 |
+
# device = torch.device(args.device)
|
100 |
+
# model = ModelManager(
|
101 |
+
# name=args.name,
|
102 |
+
# device=device,
|
103 |
+
# sd_run_local=True,
|
104 |
+
# disable_nsfw=True,
|
105 |
+
# sd_cpu_textencoder=True,
|
106 |
+
# hf_access_token="123"
|
107 |
+
# )
|
108 |
+
# benchmark(model, args.times, args.empty_cache)
|
const.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
MPS_SUPPORT_MODELS = [
|
4 |
+
"instruct_pix2pix",
|
5 |
+
"sd1.5",
|
6 |
+
"anything4",
|
7 |
+
"realisticVision1.4",
|
8 |
+
"sd2",
|
9 |
+
"paint_by_example"
|
10 |
+
]
|
11 |
+
|
12 |
+
DEFAULT_MODEL = "lama"
|
13 |
+
AVAILABLE_MODELS = [
|
14 |
+
"lama",
|
15 |
+
"ldm",
|
16 |
+
"zits",
|
17 |
+
"mat",
|
18 |
+
"fcf",
|
19 |
+
"sd1.5",
|
20 |
+
"anything4",
|
21 |
+
"realisticVision1.4",
|
22 |
+
"cv2",
|
23 |
+
"manga",
|
24 |
+
"sd2",
|
25 |
+
"paint_by_example",
|
26 |
+
"instruct_pix2pix",
|
27 |
+
]
|
28 |
+
|
29 |
+
AVAILABLE_DEVICES = ["cuda", "cpu", "mps"]
|
30 |
+
DEFAULT_DEVICE = 'cuda'
|
31 |
+
|
32 |
+
NO_HALF_HELP = """
|
33 |
+
Using full precision model.
|
34 |
+
If your generate result is always black or green, use this argument. (sd/paint_by_exmaple)
|
35 |
+
"""
|
36 |
+
|
37 |
+
CPU_OFFLOAD_HELP = """
|
38 |
+
Offloads all models to CPU, significantly reducing vRAM usage. (sd/paint_by_example)
|
39 |
+
"""
|
40 |
+
|
41 |
+
DISABLE_NSFW_HELP = """
|
42 |
+
Disable NSFW checker. (sd/paint_by_example)
|
43 |
+
"""
|
44 |
+
|
45 |
+
SD_CPU_TEXTENCODER_HELP = """
|
46 |
+
Run Stable Diffusion text encoder model on CPU to save GPU memory.
|
47 |
+
"""
|
48 |
+
|
49 |
+
LOCAL_FILES_ONLY_HELP = """
|
50 |
+
Use local files only, not connect to Hugging Face server. (sd/paint_by_example)
|
51 |
+
"""
|
52 |
+
|
53 |
+
ENABLE_XFORMERS_HELP = """
|
54 |
+
Enable xFormers optimizations. Requires xformers package has been installed. See: https://github.com/facebookresearch/xformers (sd/paint_by_example)
|
55 |
+
"""
|
56 |
+
|
57 |
+
DEFAULT_MODEL_DIR = os.getenv(
|
58 |
+
"XDG_CACHE_HOME",
|
59 |
+
os.path.join(os.path.expanduser("~"), ".cache")
|
60 |
+
)
|
61 |
+
MODEL_DIR_HELP = """
|
62 |
+
Model download directory (by setting XDG_CACHE_HOME environment variable), by default model downloaded to ~/.cache
|
63 |
+
"""
|
64 |
+
|
65 |
+
OUTPUT_DIR_HELP = """
|
66 |
+
Result images will be saved to output directory automatically without confirmation.
|
67 |
+
"""
|
68 |
+
|
69 |
+
INPUT_HELP = """
|
70 |
+
If input is image, it will be loaded by default.
|
71 |
+
If input is directory, you can browse and select image in file manager.
|
72 |
+
"""
|
73 |
+
|
74 |
+
GUI_HELP = """
|
75 |
+
Launch Lama Cleaner as desktop app
|
76 |
+
"""
|
77 |
+
|
78 |
+
NO_GUI_AUTO_CLOSE_HELP = """
|
79 |
+
Prevent backend auto close after the GUI window closed.
|
80 |
+
"""
|
ext/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .image_watermark_handler import ImageWatermarkHandler
|
ext/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (297 Bytes). View file
|
|
ext/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (284 Bytes). View file
|
|
ext/__pycache__/image_watermark_handler.cpython-38.pyc
ADDED
Binary file (2.58 kB). View file
|
|
ext/__pycache__/image_watermark_handler.cpython-39.pyc
ADDED
Binary file (2.56 kB). View file
|
|
ext/image_watermark_handler.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
|
5 |
+
import cv2 as cv
|
6 |
+
import numpy as np
|
7 |
+
import requests
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
|
11 |
+
class ImageWatermarkHandler:
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
pass
|
15 |
+
|
16 |
+
def index_watermark(self, img_path, block_size, step_len, threshold, temp_output_path):
|
17 |
+
"""
|
18 |
+
该代码首先读取图像,并定义了块的大小和阈值。然后,它遍历图像的每个块,并计算每个块的标准差。
|
19 |
+
如果标准差小于阈值,则认为当前块变化微小。然后将图片保存到本地(可选)并返回 list
|
20 |
+
:param img_path: img路径
|
21 |
+
:param watermark_size: 定义块的大小
|
22 |
+
:param step_len: 遍历的步长
|
23 |
+
:param threshold: 定义阈值
|
24 |
+
:param temp_output_path: sub_img临时保存路径
|
25 |
+
:return:
|
26 |
+
"""
|
27 |
+
# read img
|
28 |
+
img = cv.imread(img_path, cv.IMREAD_GRAYSCALE) # 把图像转成单通道的灰度图输出
|
29 |
+
|
30 |
+
# get width and height
|
31 |
+
height, width = img.shape
|
32 |
+
print("cur gray img width: %s,height: %s,block_size:%s" % (width, height, block_size))
|
33 |
+
block_num = int(height * width // block_size)
|
34 |
+
print("total split block num : %s" % (block_num))
|
35 |
+
|
36 |
+
# remove last res dir
|
37 |
+
# 不保存图片就不用创建文件夹
|
38 |
+
# if (os.path.exists(temp_output_path)):
|
39 |
+
# shutil.rmtree(temp_output_path)
|
40 |
+
# os.mkdir(temp_output_path)
|
41 |
+
|
42 |
+
# save pixel index to memory and lcoal file
|
43 |
+
list = []
|
44 |
+
# foreach block
|
45 |
+
for i in range(0, height, step_len):
|
46 |
+
for j in range(0, width, step_len):
|
47 |
+
# get pixel value
|
48 |
+
block = img[i:i + block_size, j:j + block_size]
|
49 |
+
# print("cur idx [%s,%s], block : %s " %(i,j,block))
|
50 |
+
|
51 |
+
# calculate std_dev
|
52 |
+
std_dev = np.std(block)
|
53 |
+
# print(" cur std_dev :{} ,cur threshold : {} ".format(std_dev, threshold)) # 测试的像素区域,w:45-65--->com
|
54 |
+
|
55 |
+
# 如果标准差小于阈值,则认为当前块变化微小
|
56 |
+
if std_dev < threshold and std_dev > 0:
|
57 |
+
# save memory
|
58 |
+
dict = {}
|
59 |
+
dict['w'] = j
|
60 |
+
dict['h'] = i
|
61 |
+
list.append(dict)
|
62 |
+
# save local file
|
63 |
+
f = temp_output_path + "{}-{}.png".format(j, i)
|
64 |
+
print("save split img =====> w : %s ,h : %s ,cur std_dev : %s,cur threshold : %s ".format(j, i,
|
65 |
+
std_dev,
|
66 |
+
threshold)) # 测试的像素区域,w:45-65--->com
|
67 |
+
# 可以不保存图片
|
68 |
+
# cv.imwrite(f, block)
|
69 |
+
return list
|
70 |
+
|
71 |
+
def get_mask(self, img_path, list, block_size, mask_img_path):
|
72 |
+
"""
|
73 |
+
获取mask
|
74 |
+
:param img_path:
|
75 |
+
:param list:
|
76 |
+
:param block_size:
|
77 |
+
:param mask_img_path:
|
78 |
+
:return:
|
79 |
+
"""
|
80 |
+
img = cv.imread(img_path, cv.IMREAD_COLOR)
|
81 |
+
# black color
|
82 |
+
img[:] = 0
|
83 |
+
for item in list:
|
84 |
+
w = int(item.get("w"))
|
85 |
+
h = int(item.get("h"))
|
86 |
+
x1, y1 = w, h # 左上角坐标
|
87 |
+
x2, y2 = w + block_size, h + block_size # 右下角坐标
|
88 |
+
# white color
|
89 |
+
img[y1:y2, x1:x2] = 255, 255, 255
|
90 |
+
# print(img[y1,x1])
|
91 |
+
# save
|
92 |
+
cv.imwrite(mask_img_path, img)
|
93 |
+
return img
|
ext/request_info.txt
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
参数
|
2 |
+
|
3 |
+
image: (binary) 源图像文件流
|
4 |
+
mask: (binary) 掩码图像字节流
|
5 |
+
|
6 |
+
ldm模型配置:
|
7 |
+
ldmSteps: 25
|
8 |
+
ldmSampler: plms
|
9 |
+
|
10 |
+
zitsWireframe: true 线框
|
11 |
+
|
12 |
+
hdStrategy: Crop ---> 支持的策略有:Crop、Origin、Resize。Crop masking area from the original image to do inpainting.对GPU友好
|
13 |
+
hdStrategyCropMargin: 196
|
14 |
+
hdStrategyCropTrigerSize: 800 ---> 会变
|
15 |
+
hdStrategyResizeLimit: 2048
|
16 |
+
prompt:
|
17 |
+
negativePrompt:
|
18 |
+
|
19 |
+
croperX: -206
|
20 |
+
croperY: -222
|
21 |
+
croperHeight: 512
|
22 |
+
croperWidth: 512
|
23 |
+
useCroper: false
|
24 |
+
|
25 |
+
sdMaskBlur: 5
|
26 |
+
sdStrength: 0.75
|
27 |
+
sdSteps: 50
|
28 |
+
sdGuidanceScale: 7.5
|
29 |
+
sdSampler: pndm
|
30 |
+
sdSeed: -1
|
31 |
+
sdMatchHistograms: false
|
32 |
+
sdScale: 1
|
33 |
+
cv2Radius: 5
|
34 |
+
cv2Flag: INPAINT_NS
|
35 |
+
paintByExampleSteps: 50
|
36 |
+
paintByExampleGuidanceScale: 7.5
|
37 |
+
paintByExampleSeed: -1 ---> 会变
|
38 |
+
paintByExampleMaskBlur: 5
|
39 |
+
paintByExampleMatchHistograms: false
|
40 |
+
p2pSteps: 50
|
41 |
+
p2pImageGuidanceScale: 1.5
|
42 |
+
p2pGuidanceScale: 7.5
|
43 |
+
sizeLimit: 99
|
44 |
+
|
ext/test.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import requests
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
"""
|
9 |
+
1、测试lama-cleaner的inpaint api
|
10 |
+
"""
|
11 |
+
def test_inpaint_api():
|
12 |
+
"""
|
13 |
+
参数为image、mask
|
14 |
+
:return:
|
15 |
+
"""
|
16 |
+
|
17 |
+
# 加载原始图像并将其转换为灰度图像
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
img_path = '/resources/jeyoo-img/img.png'
|
22 |
+
mask_img_path = '/resources/jeyoo-img/img_mask.png'
|
23 |
+
clean_img_path = "/resources/jeyoo-img/img_clean.png"
|
24 |
+
|
25 |
+
img = cv2.imread(img_path)
|
26 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
27 |
+
cv2.imshow('gray', gray)
|
28 |
+
|
29 |
+
cv2.imwrite(mask_img_path,gray)
|
30 |
+
|
31 |
+
# image_file_object = cv2.imread(img_path)
|
32 |
+
# mask_file_object = cv2.imread(mask_img_path)
|
33 |
+
|
34 |
+
r = requests.post('http://127.0.0.1:7860/inpaint',
|
35 |
+
files={
|
36 |
+
'image': open(img_path, 'rb'),
|
37 |
+
'mask': open(mask_img_path, 'rb')},
|
38 |
+
data={
|
39 |
+
'ldmSteps': 25,
|
40 |
+
'ldmSampler': "plms",
|
41 |
+
'zitsWireframe': bool(True),
|
42 |
+
'hdStrategy': "Crop",
|
43 |
+
'hdStrategyCropMargin': 196,
|
44 |
+
'hdStrategyCropTrigerSize': 800,
|
45 |
+
'hdStrategyResizeLimit': 2048,
|
46 |
+
'prompt': "",
|
47 |
+
'negativePrompt': "",
|
48 |
+
'croperX': 58,
|
49 |
+
'croperY': -26,
|
50 |
+
'croperHeight': 512,
|
51 |
+
'croperWidth': 512,
|
52 |
+
'useCroper': bool(False),
|
53 |
+
'sdMaskBlur': 5,
|
54 |
+
'sdStrength': 0.75,
|
55 |
+
'sdSteps': 50,
|
56 |
+
'sdGuidanceScale': 7.5,
|
57 |
+
'sdSampler': "pndm",
|
58 |
+
'sdSeed': -1,
|
59 |
+
'sdMatchHistograms': bool(False),
|
60 |
+
'sdScale': 1,
|
61 |
+
'cv2Radius': 5,
|
62 |
+
'cv2Flag': "INPAINT_NS",
|
63 |
+
'paintByExampleSteps': 50,
|
64 |
+
'paintByExampleGuidanceScale': 7.5,
|
65 |
+
'paintByExampleSeed': -1,
|
66 |
+
'paintByExampleMaskBlur': 5,
|
67 |
+
'paintByExampleMatchHistograms': bool(False),
|
68 |
+
'p2pSteps': 50,
|
69 |
+
'p2pImageGuidanceScale': 1.5,
|
70 |
+
'p2pGuidanceScale': 7.5,
|
71 |
+
'sizeLimit': 628
|
72 |
+
},
|
73 |
+
headers={'x-api-key': 'xxxx'}
|
74 |
+
)
|
75 |
+
if (r.ok):
|
76 |
+
# r.content contains the bytes of the returned image
|
77 |
+
print(r)
|
78 |
+
image_data = r.content
|
79 |
+
|
80 |
+
# 将图片数据转换为图像对象
|
81 |
+
image = Image.open(io.BytesIO(image_data))
|
82 |
+
# 将图像对象保存到本地文件
|
83 |
+
image.save(clean_img_path)
|
84 |
+
else:
|
85 |
+
r.raise_for_status()
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
"""
|
91 |
+
2、测试从从image根据 watermark 获取 mask img
|
92 |
+
"""
|
93 |
+
def test_get_mask_by_gradient():
|
94 |
+
"""
|
95 |
+
在这个示例代码中,我们首先读取一张图片,并将其转换为灰度图像。
|
96 |
+
然后,我们使用Sobel算子计算图像的梯度,并计算像素变化的平均值。
|
97 |
+
接着,我们将像素变化小于平均值一半的像素设置为0,得到一个二值掩码。
|
98 |
+
最后,我们使用findContours函数找到掩码中的轮廓,并使用boundingRect函数获取每个轮廓的矩形框。
|
99 |
+
最后,我们在原图上绘制矩形框,并显示结果。
|
100 |
+
"""
|
101 |
+
# 读取图片
|
102 |
+
img = cv2.imread('../lama_cleaner_source_code/resources/jeyoo-img/image31.png')
|
103 |
+
|
104 |
+
# 转换为灰度图像
|
105 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
106 |
+
|
107 |
+
# 计算梯度
|
108 |
+
|
109 |
+
# src:gray图像
|
110 |
+
# ddepth:int类型的ddepth,输出图像的深度,若src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F
|
111 |
+
# dx、dy:X、y方向的差分阶数
|
112 |
+
grad_x = cv2.Sobel(gray, cv2.CV_32F, 1, 0)
|
113 |
+
grad_y = cv2.Sobel(gray, cv2.CV_32F, 0, 1)
|
114 |
+
# print("grad_x:{},grad_y:{}".format(grad_x,grad_y))
|
115 |
+
|
116 |
+
# gray_x、gray_y是矩阵,第二个参数是权重
|
117 |
+
grad = cv2.addWeighted(grad_x, 0.5, grad_y, 0.5, 0)
|
118 |
+
|
119 |
+
# 计算像素变化小的区域
|
120 |
+
|
121 |
+
# 对数组中的每一个元素求其绝对值。
|
122 |
+
grad_abs = np.absolute(grad)
|
123 |
+
# 相似变化的平均值
|
124 |
+
grad_mean = np.mean(grad_abs)
|
125 |
+
# 0.7是最大
|
126 |
+
grad_threshold = grad_mean * 0.5
|
127 |
+
grad_mask = grad_abs < grad_threshold
|
128 |
+
# for i, element in enumerate(grad_abs):
|
129 |
+
# print("第 {} 行 ".format(i))
|
130 |
+
# for j in enumerate(element):
|
131 |
+
# print("{}".format(j))
|
132 |
+
|
133 |
+
print("grad_mean:{},grad_threshold:{}".format(grad_mean,grad_threshold)) # grad_mean:93.4161148071289,grad_threshold:46.70805740356445
|
134 |
+
|
135 |
+
|
136 |
+
# 获取像素变化小的区域的矩形框
|
137 |
+
contours, hierarchy = cv2.findContours(grad_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
138 |
+
# print(contours)
|
139 |
+
rects = [cv2.boundingRect(cnt) for cnt in contours]
|
140 |
+
|
141 |
+
# 在原图上绘制矩形框
|
142 |
+
for rect in rects:
|
143 |
+
cv2.rectangle(img, (rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (0, 0, 255), 2)
|
144 |
+
|
145 |
+
|
146 |
+
# 显示结果
|
147 |
+
cv2.imshow('image', img)
|
148 |
+
cv2.waitKey(0)
|
149 |
+
cv2.destroyAllWindows()
|
150 |
+
cv2.imwrite('../lama_cleaner_source_code/resources/jeyoo-img/out/imgage31.png',img)
|
151 |
+
|
152 |
+
|
153 |
+
def test_get_mask_by_watermark():
|
154 |
+
"""
|
155 |
+
从image根据 watermark_img 获取mask img
|
156 |
+
|
157 |
+
要从图像中获取水印位置的掩码图像,您可以使用OpenCV中的模板匹配技术。模板匹配是一种在图像中查找给定模板的技术,它可以用于检测图像中的水印位置。
|
158 |
+
以下是使用OpenCV从图像中获取水印位置的掩码图像的步骤:
|
159 |
+
加载原始图像和水印图像。
|
160 |
+
将水印图像转换为灰度图像。
|
161 |
+
使用OpenCV中的模板匹配函数(cv2.matchTemplate)在原始图像中查找水印图像的位置。
|
162 |
+
根据匹配结果创建掩码图像。在掩码图像中,将匹配位置设置为白色,其他位置设置为黑色。
|
163 |
+
:return:
|
164 |
+
"""
|
165 |
+
|
166 |
+
# 加载原始图像和水印图像
|
167 |
+
img = cv2.imread('original_image.jpg')
|
168 |
+
watermark = cv2.imread('watermark_image.jpg')
|
169 |
+
|
170 |
+
# 将水印图像转换为灰度图像
|
171 |
+
watermark_gray = cv2.cvtColor(watermark, cv2.COLOR_BGR2GRAY)
|
172 |
+
|
173 |
+
# 使用模板匹配在原始图像中查找水印图像的位置
|
174 |
+
result = cv2.matchTemplate(img, watermark_gray, cv2.TM_CCOEFF_NORMED)
|
175 |
+
|
176 |
+
# 根据匹配结果创建掩码图像
|
177 |
+
threshold = 0.8
|
178 |
+
mask = np.zeros_like(result)
|
179 |
+
mask[result >= threshold] = 255
|
180 |
+
|
181 |
+
# 显示掩码图像
|
182 |
+
cv2.imshow('Mask', mask)
|
183 |
+
|
184 |
+
# 等待用户按下任意键
|
185 |
+
cv2.waitKey(0)
|
186 |
+
|
187 |
+
# 释放窗口
|
188 |
+
cv2.destroyAllWindows()
|
189 |
+
|
190 |
+
|
191 |
+
def test_get_mask_by_watermark2():
|
192 |
+
|
193 |
+
"""
|
194 |
+
在上面的代码中,我们使用Canny算子对灰度图像进行边缘检测,并使用cv2.findContours函数对边缘图像进行轮廓检测。
|
195 |
+
然后,我们对每个轮廓进行形状分析,并根据筛选出的轮廓创建掩码图像。
|
196 |
+
在筛选轮廓时,我们使用了cv2.isContourConvex函数来排除非凸形状的轮廓。您可以根据需要调整形状分析的参数来获得更好的结果。
|
197 |
+
:return:
|
198 |
+
"""
|
199 |
+
# 加载原始图像并将其转换为灰度图像
|
200 |
+
img = cv2.imread('../lama_cleaner_source_code/resources/jeyoo-img/img.png')
|
201 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
202 |
+
|
203 |
+
cv2.imshow('gray', gray)
|
204 |
+
cv2.waitKey(0)
|
205 |
+
|
206 |
+
# 对灰度图像进行边缘检测
|
207 |
+
edges = cv2.Canny(gray, 50, 150)
|
208 |
+
cv2.imshow('edges', edges)
|
209 |
+
cv2.waitKey(0)
|
210 |
+
|
211 |
+
|
212 |
+
# 对边缘图像进行轮廓检测
|
213 |
+
contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
214 |
+
|
215 |
+
|
216 |
+
# 对每个轮廓进行形状分析,筛选出可能是水印的轮廓
|
217 |
+
watermark_contours = []
|
218 |
+
for contour in contours:
|
219 |
+
perimeter = cv2.arcLength(contour, True)
|
220 |
+
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True)
|
221 |
+
print(len(approx))
|
222 |
+
if len(approx) == 6 and cv2.isContourConvex(approx):
|
223 |
+
watermark_contours.append(approx)
|
224 |
+
|
225 |
+
# 根据筛选出的轮廓,创建掩码图像
|
226 |
+
mask = np.zeros_like(gray)
|
227 |
+
for contour in watermark_contours:
|
228 |
+
cv2.drawContours(mask, [contour], 0, 255, -1)
|
229 |
+
|
230 |
+
# 显示掩码图像
|
231 |
+
cv2.imshow('Mask', mask)
|
232 |
+
|
233 |
+
# 等待用户按下任意键
|
234 |
+
cv2.waitKey(0)
|
235 |
+
|
236 |
+
# 释放窗口
|
237 |
+
cv2.destroyAllWindows()
|
238 |
+
|
239 |
+
|
240 |
+
def test_get_mask_img_watermark3():
|
241 |
+
"""
|
242 |
+
|
243 |
+
要为水印区域生成掩码图像,您可以使用OpenCV中的矩形掩码。以下是生成掩码图像的步骤:
|
244 |
+
创建一个与原始图像大小相同的黑色图像,作为掩码图像。
|
245 |
+
使用OpenCV中的 cv2.rectangle() 函数在掩码图像上绘制一个矩形,该矩形覆盖水印区域。
|
246 |
+
将掩码图像转换为灰度图像,并使用OpenCV中的 cv2.threshold() 函数将其二值化,以便将水印区域设置为白色,其余区域设置为黑色。
|
247 |
+
:return:
|
248 |
+
"""
|
249 |
+
img = cv2.imread('../lama_cleaner_source_code/resources/jeyoo-img/img.png')
|
250 |
+
|
251 |
+
# 创建掩码图像
|
252 |
+
mask = np.zeros_like(img)
|
253 |
+
|
254 |
+
# 定义水印区域
|
255 |
+
x, y, w, h = 3, 18, 29, 29
|
256 |
+
|
257 |
+
# 在掩码图像上绘制矩形
|
258 |
+
cv2.rectangle(mask, (x, y), (x + w, y + h), (255, 255, 255), -1)
|
259 |
+
|
260 |
+
# 将掩码图像转换为灰度图像
|
261 |
+
mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
262 |
+
|
263 |
+
# 将掩码图像二值化
|
264 |
+
_, mask_binary = cv2.threshold(mask_gray, 1, 255, cv2.THRESH_BINARY)
|
265 |
+
|
266 |
+
# 显示掩码图像
|
267 |
+
cv2.imshow('Mask', mask_binary)
|
268 |
+
cv2.waitKey(0)
|
269 |
+
cv2.destroyAllWindows()
|
270 |
+
|
271 |
+
|
272 |
+
"""
|
273 |
+
3、测试从image根据 watermark 获取 mask img
|
274 |
+
"""
|
275 |
+
|
276 |
+
def test_get_mask_by_inrange():
|
277 |
+
|
278 |
+
"""
|
279 |
+
方式1
|
280 |
+
:return:
|
281 |
+
"""
|
282 |
+
img_path = '../lama_cleaner_docker/resources/jeyoo2-shuiyin.png'
|
283 |
+
img = cv2.imread(img_path)
|
284 |
+
# 转换为灰度图像
|
285 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
286 |
+
# 计算掩码,删除像素位于该区间的
|
287 |
+
mask = cv2.inRange(gray, 240, 255)
|
288 |
+
cv2.imshow('mask1', mask)
|
289 |
+
cv2.waitKey(0)
|
290 |
+
|
291 |
+
|
292 |
+
"""
|
293 |
+
方式2
|
294 |
+
"""
|
295 |
+
# 读取图片
|
296 |
+
img = cv2.imread(img_path)
|
297 |
+
cv2.imshow("img" ,img)
|
298 |
+
cv2.waitKey(0)
|
299 |
+
# 将图片转换为HSV颜色空间
|
300 |
+
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
301 |
+
cv2.imshow("hsv", hsv)
|
302 |
+
cv2.waitKey(0)
|
303 |
+
|
304 |
+
means, dev = cv2.meanStdDev(img)
|
305 |
+
print("means:{}".format(means))
|
306 |
+
# means: [[227.75111119]
|
307 |
+
# [228.73636804]
|
308 |
+
# [225.89541678]]
|
309 |
+
|
310 |
+
# 定义颜色范围
|
311 |
+
lower_color = np.array([100, 100, 100])
|
312 |
+
upper_color = np.array([255, 255, 255])
|
313 |
+
|
314 |
+
# 创建掩码
|
315 |
+
mask2 = cv2.inRange(hsv, lower_color, upper_color)
|
316 |
+
|
317 |
+
cv2.imshow("mask2", mask2)
|
318 |
+
cv2.waitKey(0)
|
319 |
+
|
320 |
+
# 获取选定区域
|
321 |
+
result = cv2.bitwise_and(img, img, mask=mask)
|
322 |
+
|
323 |
+
# 显示结果
|
324 |
+
cv2.imshow('image', result)
|
325 |
+
cv2.waitKey(0)
|
326 |
+
cv2.destroyAllWindows()
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
"""
|
331 |
+
测试opencv的inpaint修复方法
|
332 |
+
"""
|
333 |
+
def test_repire_old_img_by_cv():
|
334 |
+
img = cv2.imread('../lama_cleaner_source_code/resources/jeyoo-shuiyin.png')
|
335 |
+
mask = cv2.imread('../lama_cleaner_source_code/resources/jeyoo2-shuiyin_mask.jpg', cv2.IMREAD_GRAYSCALE)
|
336 |
+
dst = cv2.inpaint(img, mask, 3, cv2.INPAINT_TELEA)
|
337 |
+
cv2.imshow('dst', dst)
|
338 |
+
cv2.waitKey(0)
|
339 |
+
cv2.destroyAllWindows()
|
340 |
+
|
341 |
+
|
file_manager/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .file_manager import FileManager
|
file_manager/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (285 Bytes). View file
|
|
file_manager/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (272 Bytes). View file
|
|
file_manager/__pycache__/file_manager.cpython-38.pyc
ADDED
Binary file (7.32 kB). View file
|
|
file_manager/__pycache__/file_manager.cpython-39.pyc
ADDED
Binary file (7.29 kB). View file
|
|
file_manager/__pycache__/storage_backends.cpython-38.pyc
ADDED
Binary file (2.07 kB). View file
|
|
file_manager/__pycache__/storage_backends.cpython-39.pyc
ADDED
Binary file (2.09 kB). View file
|
|
file_manager/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (1.72 kB). View file
|
|
file_manager/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (1.7 kB). View file
|
|
file_manager/file_manager.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copy from https://github.com/silentsokolov/flask-thumbnails/blob/master/flask_thumbnails/thumbnail.py
|
2 |
+
import os
|
3 |
+
from datetime import datetime
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import time
|
7 |
+
from io import BytesIO
|
8 |
+
from pathlib import Path
|
9 |
+
import numpy as np
|
10 |
+
from watchdog.events import FileSystemEventHandler
|
11 |
+
from watchdog.observers import Observer
|
12 |
+
|
13 |
+
from PIL import Image, ImageOps, PngImagePlugin
|
14 |
+
from loguru import logger
|
15 |
+
|
16 |
+
LARGE_ENOUGH_NUMBER = 100
|
17 |
+
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
|
18 |
+
from .storage_backends import FilesystemStorageBackend
|
19 |
+
from .utils import aspect_to_string, generate_filename, glob_img
|
20 |
+
|
21 |
+
|
22 |
+
class FileManager(FileSystemEventHandler):
|
23 |
+
def __init__(self, app=None):
|
24 |
+
self.app = app
|
25 |
+
self._default_root_directory = "media"
|
26 |
+
self._default_thumbnail_directory = "media"
|
27 |
+
self._default_root_url = "/"
|
28 |
+
self._default_thumbnail_root_url = "/"
|
29 |
+
self._default_format = "JPEG"
|
30 |
+
self.output_dir: Path = None
|
31 |
+
|
32 |
+
if app is not None:
|
33 |
+
self.init_app(app)
|
34 |
+
|
35 |
+
self.image_dir_filenames = []
|
36 |
+
self.output_dir_filenames = []
|
37 |
+
|
38 |
+
self.image_dir_observer = None
|
39 |
+
self.output_dir_observer = None
|
40 |
+
|
41 |
+
self.modified_time = {
|
42 |
+
"image": datetime.utcnow(),
|
43 |
+
"output": datetime.utcnow(),
|
44 |
+
}
|
45 |
+
|
46 |
+
def start(self):
|
47 |
+
self.image_dir_filenames = self._media_names(self.root_directory)
|
48 |
+
self.output_dir_filenames = self._media_names(self.output_dir)
|
49 |
+
|
50 |
+
logger.info(f"Start watching image directory: {self.root_directory}")
|
51 |
+
self.image_dir_observer = Observer()
|
52 |
+
self.image_dir_observer.schedule(self, self.root_directory, recursive=False)
|
53 |
+
self.image_dir_observer.start()
|
54 |
+
|
55 |
+
logger.info(f"Start watching output directory: {self.output_dir}")
|
56 |
+
self.output_dir_observer = Observer()
|
57 |
+
self.output_dir_observer.schedule(self, self.output_dir, recursive=False)
|
58 |
+
self.output_dir_observer.start()
|
59 |
+
|
60 |
+
def on_modified(self, event):
|
61 |
+
if not os.path.isdir(event.src_path):
|
62 |
+
return
|
63 |
+
if event.src_path == str(self.root_directory):
|
64 |
+
logger.info(f"Image directory {event.src_path} modified")
|
65 |
+
self.image_dir_filenames = self._media_names(self.root_directory)
|
66 |
+
self.modified_time["image"] = datetime.utcnow()
|
67 |
+
elif event.src_path == str(self.output_dir):
|
68 |
+
logger.info(f"Output directory {event.src_path} modified")
|
69 |
+
self.output_dir_filenames = self._media_names(self.output_dir)
|
70 |
+
self.modified_time["output"] = datetime.utcnow()
|
71 |
+
|
72 |
+
def init_app(self, app):
|
73 |
+
if self.app is None:
|
74 |
+
self.app = app
|
75 |
+
app.thumbnail_instance = self
|
76 |
+
|
77 |
+
if not hasattr(app, "extensions"):
|
78 |
+
app.extensions = {}
|
79 |
+
|
80 |
+
if "thumbnail" in app.extensions:
|
81 |
+
raise RuntimeError("Flask-thumbnail extension already initialized")
|
82 |
+
|
83 |
+
app.extensions["thumbnail"] = self
|
84 |
+
|
85 |
+
app.config.setdefault("THUMBNAIL_MEDIA_ROOT", self._default_root_directory)
|
86 |
+
app.config.setdefault(
|
87 |
+
"THUMBNAIL_MEDIA_THUMBNAIL_ROOT", self._default_thumbnail_directory
|
88 |
+
)
|
89 |
+
app.config.setdefault("THUMBNAIL_MEDIA_URL", self._default_root_url)
|
90 |
+
app.config.setdefault(
|
91 |
+
"THUMBNAIL_MEDIA_THUMBNAIL_URL", self._default_thumbnail_root_url
|
92 |
+
)
|
93 |
+
app.config.setdefault("THUMBNAIL_DEFAULT_FORMAT", self._default_format)
|
94 |
+
|
95 |
+
@property
|
96 |
+
def root_directory(self):
|
97 |
+
path = self.app.config["THUMBNAIL_MEDIA_ROOT"]
|
98 |
+
|
99 |
+
if os.path.isabs(path):
|
100 |
+
return path
|
101 |
+
else:
|
102 |
+
return os.path.join(self.app.root_path, path)
|
103 |
+
|
104 |
+
@property
|
105 |
+
def thumbnail_directory(self):
|
106 |
+
path = self.app.config["THUMBNAIL_MEDIA_THUMBNAIL_ROOT"]
|
107 |
+
|
108 |
+
if os.path.isabs(path):
|
109 |
+
return path
|
110 |
+
else:
|
111 |
+
return os.path.join(self.app.root_path, path)
|
112 |
+
|
113 |
+
@property
|
114 |
+
def root_url(self):
|
115 |
+
return self.app.config["THUMBNAIL_MEDIA_URL"]
|
116 |
+
|
117 |
+
@property
|
118 |
+
def media_names(self):
|
119 |
+
# return self.image_dir_filenames
|
120 |
+
return self._media_names(self.root_directory)
|
121 |
+
|
122 |
+
@property
|
123 |
+
def output_media_names(self):
|
124 |
+
return self._media_names(self.output_dir)
|
125 |
+
# return self.output_dir_filenames
|
126 |
+
|
127 |
+
@staticmethod
|
128 |
+
def _media_names(directory: Path):
|
129 |
+
names = sorted([it.name for it in glob_img(directory)])
|
130 |
+
res = []
|
131 |
+
for name in names:
|
132 |
+
path = os.path.join(directory, name)
|
133 |
+
img = Image.open(path)
|
134 |
+
res.append(
|
135 |
+
{
|
136 |
+
"name": name,
|
137 |
+
"height": img.height,
|
138 |
+
"width": img.width,
|
139 |
+
"ctime": os.path.getctime(path),
|
140 |
+
}
|
141 |
+
)
|
142 |
+
return res
|
143 |
+
|
144 |
+
@property
|
145 |
+
def thumbnail_url(self):
|
146 |
+
return self.app.config["THUMBNAIL_MEDIA_THUMBNAIL_URL"]
|
147 |
+
|
148 |
+
def get_thumbnail(
|
149 |
+
self, directory: Path, original_filename: str, width, height, **options
|
150 |
+
):
|
151 |
+
storage = FilesystemStorageBackend(self.app)
|
152 |
+
crop = options.get("crop", "fit")
|
153 |
+
background = options.get("background")
|
154 |
+
quality = options.get("quality", 90)
|
155 |
+
|
156 |
+
original_path, original_filename = os.path.split(original_filename)
|
157 |
+
original_filepath = os.path.join(directory, original_path, original_filename)
|
158 |
+
image = Image.open(BytesIO(storage.read(original_filepath)))
|
159 |
+
|
160 |
+
# keep ratio resize
|
161 |
+
if width is not None:
|
162 |
+
height = int(image.height * width / image.width)
|
163 |
+
else:
|
164 |
+
width = int(image.width * height / image.height)
|
165 |
+
|
166 |
+
thumbnail_size = (width, height)
|
167 |
+
|
168 |
+
thumbnail_filename = generate_filename(
|
169 |
+
original_filename,
|
170 |
+
aspect_to_string(thumbnail_size),
|
171 |
+
crop,
|
172 |
+
background,
|
173 |
+
quality,
|
174 |
+
)
|
175 |
+
|
176 |
+
thumbnail_filepath = os.path.join(
|
177 |
+
self.thumbnail_directory, original_path, thumbnail_filename
|
178 |
+
)
|
179 |
+
thumbnail_url = os.path.join(
|
180 |
+
self.thumbnail_url, original_path, thumbnail_filename
|
181 |
+
)
|
182 |
+
|
183 |
+
if storage.exists(thumbnail_filepath):
|
184 |
+
return thumbnail_url, (width, height)
|
185 |
+
|
186 |
+
try:
|
187 |
+
image.load()
|
188 |
+
except (IOError, OSError):
|
189 |
+
self.app.logger.warning("Thumbnail not load image: %s", original_filepath)
|
190 |
+
return thumbnail_url, (width, height)
|
191 |
+
|
192 |
+
# get original image format
|
193 |
+
options["format"] = options.get("format", image.format)
|
194 |
+
|
195 |
+
image = self._create_thumbnail(
|
196 |
+
image, thumbnail_size, crop, background=background
|
197 |
+
)
|
198 |
+
|
199 |
+
raw_data = self.get_raw_data(image, **options)
|
200 |
+
storage.save(thumbnail_filepath, raw_data)
|
201 |
+
|
202 |
+
return thumbnail_url, (width, height)
|
203 |
+
|
204 |
+
def get_raw_data(self, image, **options):
|
205 |
+
data = {
|
206 |
+
"format": self._get_format(image, **options),
|
207 |
+
"quality": options.get("quality", 90),
|
208 |
+
}
|
209 |
+
|
210 |
+
_file = BytesIO()
|
211 |
+
image.save(_file, **data)
|
212 |
+
return _file.getvalue()
|
213 |
+
|
214 |
+
@staticmethod
|
215 |
+
def colormode(image, colormode="RGB"):
|
216 |
+
if colormode == "RGB" or colormode == "RGBA":
|
217 |
+
if image.mode == "RGBA":
|
218 |
+
return image
|
219 |
+
if image.mode == "LA":
|
220 |
+
return image.convert("RGBA")
|
221 |
+
return image.convert(colormode)
|
222 |
+
|
223 |
+
if colormode == "GRAY":
|
224 |
+
return image.convert("L")
|
225 |
+
|
226 |
+
return image.convert(colormode)
|
227 |
+
|
228 |
+
@staticmethod
|
229 |
+
def background(original_image, color=0xFF):
|
230 |
+
size = (max(original_image.size),) * 2
|
231 |
+
image = Image.new("L", size, color)
|
232 |
+
image.paste(
|
233 |
+
original_image,
|
234 |
+
tuple(map(lambda x: (x[0] - x[1]) / 2, zip(size, original_image.size))),
|
235 |
+
)
|
236 |
+
|
237 |
+
return image
|
238 |
+
|
239 |
+
def _get_format(self, image, **options):
|
240 |
+
if options.get("format"):
|
241 |
+
return options.get("format")
|
242 |
+
if image.format:
|
243 |
+
return image.format
|
244 |
+
|
245 |
+
return self.app.config["THUMBNAIL_DEFAULT_FORMAT"]
|
246 |
+
|
247 |
+
def _create_thumbnail(self, image, size, crop="fit", background=None):
|
248 |
+
try:
|
249 |
+
resample = Image.Resampling.LANCZOS
|
250 |
+
except AttributeError: # pylint: disable=raise-missing-from
|
251 |
+
resample = Image.ANTIALIAS
|
252 |
+
|
253 |
+
if crop == "fit":
|
254 |
+
image = ImageOps.fit(image, size, resample)
|
255 |
+
else:
|
256 |
+
image = image.copy()
|
257 |
+
image.thumbnail(size, resample=resample)
|
258 |
+
|
259 |
+
if background is not None:
|
260 |
+
image = self.background(image)
|
261 |
+
|
262 |
+
image = self.colormode(image)
|
263 |
+
|
264 |
+
return image
|
file_manager/storage_backends.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copy from https://github.com/silentsokolov/flask-thumbnails/blob/master/flask_thumbnails/storage_backends.py
|
2 |
+
import errno
|
3 |
+
import os
|
4 |
+
from abc import ABC, abstractmethod
|
5 |
+
|
6 |
+
|
7 |
+
class BaseStorageBackend(ABC):
|
8 |
+
def __init__(self, app=None):
|
9 |
+
self.app = app
|
10 |
+
|
11 |
+
@abstractmethod
|
12 |
+
def read(self, filepath, mode="rb", **kwargs):
|
13 |
+
raise NotImplementedError
|
14 |
+
|
15 |
+
@abstractmethod
|
16 |
+
def exists(self, filepath):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
@abstractmethod
|
20 |
+
def save(self, filepath, data):
|
21 |
+
raise NotImplementedError
|
22 |
+
|
23 |
+
|
24 |
+
class FilesystemStorageBackend(BaseStorageBackend):
|
25 |
+
def read(self, filepath, mode="rb", **kwargs):
|
26 |
+
with open(filepath, mode) as f: # pylint: disable=unspecified-encoding
|
27 |
+
return f.read()
|
28 |
+
|
29 |
+
def exists(self, filepath):
|
30 |
+
return os.path.exists(filepath)
|
31 |
+
|
32 |
+
def save(self, filepath, data):
|
33 |
+
directory = os.path.dirname(filepath)
|
34 |
+
|
35 |
+
if not os.path.exists(directory):
|
36 |
+
try:
|
37 |
+
os.makedirs(directory)
|
38 |
+
except OSError as e:
|
39 |
+
if e.errno != errno.EEXIST:
|
40 |
+
raise
|
41 |
+
|
42 |
+
if not os.path.isdir(directory):
|
43 |
+
raise IOError("{} is not a directory".format(directory))
|
44 |
+
|
45 |
+
with open(filepath, "wb") as f:
|
46 |
+
f.write(data)
|
file_manager/utils.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copy from: https://github.com/silentsokolov/flask-thumbnails/blob/master/flask_thumbnails/utils.py
|
2 |
+
import importlib
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
from typing import Union
|
7 |
+
|
8 |
+
|
9 |
+
def generate_filename(original_filename, *options):
|
10 |
+
name, ext = os.path.splitext(original_filename)
|
11 |
+
for v in options:
|
12 |
+
if v:
|
13 |
+
name += "_%s" % v
|
14 |
+
name += ext
|
15 |
+
|
16 |
+
return name
|
17 |
+
|
18 |
+
|
19 |
+
def parse_size(size):
|
20 |
+
if isinstance(size, int):
|
21 |
+
# If the size parameter is a single number, assume square aspect.
|
22 |
+
return [size, size]
|
23 |
+
|
24 |
+
if isinstance(size, (tuple, list)):
|
25 |
+
if len(size) == 1:
|
26 |
+
# If single value tuple/list is provided, exand it to two elements
|
27 |
+
return size + type(size)(size)
|
28 |
+
return size
|
29 |
+
|
30 |
+
try:
|
31 |
+
thumbnail_size = [int(x) for x in size.lower().split("x", 1)]
|
32 |
+
except ValueError:
|
33 |
+
raise ValueError( # pylint: disable=raise-missing-from
|
34 |
+
"Bad thumbnail size format. Valid format is INTxINT."
|
35 |
+
)
|
36 |
+
|
37 |
+
if len(thumbnail_size) == 1:
|
38 |
+
# If the size parameter only contains a single integer, assume square aspect.
|
39 |
+
thumbnail_size.append(thumbnail_size[0])
|
40 |
+
|
41 |
+
return thumbnail_size
|
42 |
+
|
43 |
+
|
44 |
+
def aspect_to_string(size):
|
45 |
+
if isinstance(size, str):
|
46 |
+
return size
|
47 |
+
|
48 |
+
return "x".join(map(str, size))
|
49 |
+
|
50 |
+
|
51 |
+
IMG_SUFFIX = {'.jpg', '.jpeg', '.png', '.JPG', '.JPEG', '.PNG'}
|
52 |
+
|
53 |
+
|
54 |
+
def glob_img(p: Union[Path, str], recursive: bool = False):
|
55 |
+
p = Path(p)
|
56 |
+
if p.is_file() and p.suffix in IMG_SUFFIX:
|
57 |
+
yield p
|
58 |
+
else:
|
59 |
+
if recursive:
|
60 |
+
files = Path(p).glob("**/*.*")
|
61 |
+
else:
|
62 |
+
files = Path(p).glob("*.*")
|
63 |
+
|
64 |
+
for it in files:
|
65 |
+
if it.suffix not in IMG_SUFFIX:
|
66 |
+
continue
|
67 |
+
yield it
|
helper.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
from typing import List, Optional
|
5 |
+
|
6 |
+
from urllib.parse import urlparse
|
7 |
+
import cv2
|
8 |
+
from PIL import Image, ImageOps
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
from const import MPS_SUPPORT_MODELS
|
12 |
+
from loguru import logger
|
13 |
+
from torch.hub import download_url_to_file, get_dir
|
14 |
+
import hashlib
|
15 |
+
|
16 |
+
|
17 |
+
def md5sum(filename):
|
18 |
+
md5 = hashlib.md5()
|
19 |
+
with open(filename, "rb") as f:
|
20 |
+
for chunk in iter(lambda: f.read(128 * md5.block_size), b""):
|
21 |
+
md5.update(chunk)
|
22 |
+
return md5.hexdigest()
|
23 |
+
|
24 |
+
|
25 |
+
def switch_mps_device(model_name, device):
|
26 |
+
if model_name not in MPS_SUPPORT_MODELS and str(device) == "mps":
|
27 |
+
logger.info(f"{model_name} not support mps, switch to cpu")
|
28 |
+
return torch.device("cpu")
|
29 |
+
return device
|
30 |
+
|
31 |
+
|
32 |
+
def get_cache_path_by_url(url):
|
33 |
+
parts = urlparse(url)
|
34 |
+
hub_dir = get_dir()
|
35 |
+
model_dir = os.path.join(hub_dir, "checkpoints")
|
36 |
+
if not os.path.isdir(model_dir):
|
37 |
+
os.makedirs(model_dir)
|
38 |
+
filename = os.path.basename(parts.path)
|
39 |
+
cached_file = os.path.join(model_dir, filename)
|
40 |
+
return cached_file
|
41 |
+
|
42 |
+
|
43 |
+
def download_model(url, model_md5: str = None):
|
44 |
+
cached_file = get_cache_path_by_url(url)
|
45 |
+
if not os.path.exists(cached_file):
|
46 |
+
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
|
47 |
+
hash_prefix = None
|
48 |
+
download_url_to_file(url, cached_file, hash_prefix, progress=True)
|
49 |
+
if model_md5:
|
50 |
+
_md5 = md5sum(cached_file)
|
51 |
+
if model_md5 == _md5:
|
52 |
+
logger.info(f"Download model success, md5: {_md5}")
|
53 |
+
else:
|
54 |
+
try:
|
55 |
+
os.remove(cached_file)
|
56 |
+
logger.error(
|
57 |
+
f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart lama-cleaner."
|
58 |
+
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
|
59 |
+
)
|
60 |
+
except:
|
61 |
+
logger.error(
|
62 |
+
f"Model md5: {_md5}, expected md5: {model_md5}, please delete {cached_file} and restart lama-cleaner."
|
63 |
+
)
|
64 |
+
exit(-1)
|
65 |
+
|
66 |
+
return cached_file
|
67 |
+
|
68 |
+
|
69 |
+
def ceil_modulo(x, mod):
|
70 |
+
if x % mod == 0:
|
71 |
+
return x
|
72 |
+
return (x // mod + 1) * mod
|
73 |
+
|
74 |
+
|
75 |
+
def handle_error(model_path, model_md5, e):
|
76 |
+
_md5 = md5sum(model_path)
|
77 |
+
if _md5 != model_md5:
|
78 |
+
try:
|
79 |
+
os.remove(model_path)
|
80 |
+
logger.error(
|
81 |
+
f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart lama-cleaner."
|
82 |
+
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
|
83 |
+
)
|
84 |
+
except:
|
85 |
+
logger.error(
|
86 |
+
f"Model md5: {_md5}, expected md5: {model_md5}, please delete {model_path} and restart lama-cleaner."
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
logger.error(
|
90 |
+
f"Failed to load model {model_path},"
|
91 |
+
f"please submit an issue at https://github.com/Sanster/lama-cleaner/issues and include a screenshot of the error:\n{e}"
|
92 |
+
)
|
93 |
+
exit(-1)
|
94 |
+
|
95 |
+
|
96 |
+
def load_jit_model(url_or_path, device, model_md5: str):
|
97 |
+
if os.path.exists(url_or_path):
|
98 |
+
model_path = url_or_path
|
99 |
+
else:
|
100 |
+
model_path = download_model(url_or_path, model_md5)
|
101 |
+
|
102 |
+
logger.info(f"Loading model from: {model_path}")
|
103 |
+
try:
|
104 |
+
model = torch.jit.load(model_path, map_location="cpu").to(device)
|
105 |
+
except Exception as e:
|
106 |
+
handle_error(model_path, model_md5, e)
|
107 |
+
model.eval()
|
108 |
+
return model
|
109 |
+
|
110 |
+
|
111 |
+
def load_model(model: torch.nn.Module, url_or_path, device, model_md5):
|
112 |
+
if os.path.exists(url_or_path):
|
113 |
+
model_path = url_or_path
|
114 |
+
else:
|
115 |
+
model_path = download_model(url_or_path, model_md5)
|
116 |
+
|
117 |
+
try:
|
118 |
+
logger.info(f"Loading model from: {model_path}")
|
119 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
120 |
+
model.load_state_dict(state_dict, strict=True)
|
121 |
+
model.to(device)
|
122 |
+
except Exception as e:
|
123 |
+
handle_error(model_path, model_md5, e)
|
124 |
+
model.eval()
|
125 |
+
return model
|
126 |
+
|
127 |
+
|
128 |
+
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
|
129 |
+
data = cv2.imencode(
|
130 |
+
f".{ext}",
|
131 |
+
image_numpy,
|
132 |
+
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
|
133 |
+
)[1]
|
134 |
+
image_bytes = data.tobytes()
|
135 |
+
return image_bytes
|
136 |
+
|
137 |
+
|
138 |
+
def pil_to_bytes(pil_img, ext: str, exif=None) -> bytes:
|
139 |
+
with io.BytesIO() as output:
|
140 |
+
pil_img.save(output, format=ext, exif=exif, quality=95)
|
141 |
+
image_bytes = output.getvalue()
|
142 |
+
return image_bytes
|
143 |
+
|
144 |
+
|
145 |
+
def load_img(img_bytes, gray: bool = False, return_exif: bool = False):
|
146 |
+
alpha_channel = None
|
147 |
+
image = Image.open(io.BytesIO(img_bytes))
|
148 |
+
|
149 |
+
try:
|
150 |
+
if return_exif:
|
151 |
+
exif = image.getexif()
|
152 |
+
except:
|
153 |
+
exif = None
|
154 |
+
logger.error("Failed to extract exif from image")
|
155 |
+
|
156 |
+
try:
|
157 |
+
image = ImageOps.exif_transpose(image)
|
158 |
+
except:
|
159 |
+
pass
|
160 |
+
|
161 |
+
if gray:
|
162 |
+
image = image.convert("L")
|
163 |
+
np_img = np.array(image)
|
164 |
+
else:
|
165 |
+
if image.mode == "RGBA":
|
166 |
+
np_img = np.array(image)
|
167 |
+
alpha_channel = np_img[:, :, -1]
|
168 |
+
np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB)
|
169 |
+
else:
|
170 |
+
image = image.convert("RGB")
|
171 |
+
np_img = np.array(image)
|
172 |
+
|
173 |
+
if return_exif:
|
174 |
+
return np_img, alpha_channel, exif
|
175 |
+
return np_img, alpha_channel
|
176 |
+
|
177 |
+
|
178 |
+
def norm_img(np_img):
|
179 |
+
if len(np_img.shape) == 2:
|
180 |
+
np_img = np_img[:, :, np.newaxis]
|
181 |
+
np_img = np.transpose(np_img, (2, 0, 1))
|
182 |
+
np_img = np_img.astype("float32") / 255
|
183 |
+
return np_img
|
184 |
+
|
185 |
+
|
186 |
+
def resize_max_size(
|
187 |
+
np_img, size_limit: int, interpolation=cv2.INTER_CUBIC
|
188 |
+
) -> np.ndarray:
|
189 |
+
# Resize image's longer size to size_limit if longer size larger than size_limit
|
190 |
+
h, w = np_img.shape[:2]
|
191 |
+
if max(h, w) > size_limit:
|
192 |
+
ratio = size_limit / max(h, w)
|
193 |
+
new_w = int(w * ratio + 0.5)
|
194 |
+
new_h = int(h * ratio + 0.5)
|
195 |
+
return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation)
|
196 |
+
else:
|
197 |
+
return np_img
|
198 |
+
|
199 |
+
|
200 |
+
def pad_img_to_modulo(
|
201 |
+
img: np.ndarray, mod: int, square: bool = False, min_size: Optional[int] = None
|
202 |
+
):
|
203 |
+
"""
|
204 |
+
|
205 |
+
Args:
|
206 |
+
img: [H, W, C]
|
207 |
+
mod:
|
208 |
+
square: 是否为正方形
|
209 |
+
min_size:
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
|
213 |
+
"""
|
214 |
+
if len(img.shape) == 2:
|
215 |
+
img = img[:, :, np.newaxis]
|
216 |
+
height, width = img.shape[:2]
|
217 |
+
out_height = ceil_modulo(height, mod)
|
218 |
+
out_width = ceil_modulo(width, mod)
|
219 |
+
|
220 |
+
if min_size is not None:
|
221 |
+
assert min_size % mod == 0
|
222 |
+
out_width = max(min_size, out_width)
|
223 |
+
out_height = max(min_size, out_height)
|
224 |
+
|
225 |
+
if square:
|
226 |
+
max_size = max(out_height, out_width)
|
227 |
+
out_height = max_size
|
228 |
+
out_width = max_size
|
229 |
+
|
230 |
+
return np.pad(
|
231 |
+
img,
|
232 |
+
((0, out_height - height), (0, out_width - width), (0, 0)),
|
233 |
+
mode="symmetric",
|
234 |
+
)
|
235 |
+
|
236 |
+
|
237 |
+
def boxes_from_mask(mask: np.ndarray) -> List[np.ndarray]:
|
238 |
+
"""
|
239 |
+
Args:
|
240 |
+
mask: (h, w, 1) 0~255
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
|
244 |
+
"""
|
245 |
+
height, width = mask.shape[:2]
|
246 |
+
_, thresh = cv2.threshold(mask, 127, 255, 0)
|
247 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
248 |
+
|
249 |
+
boxes = []
|
250 |
+
for cnt in contours:
|
251 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
252 |
+
box = np.array([x, y, x + w, y + h]).astype(int)
|
253 |
+
|
254 |
+
box[::2] = np.clip(box[::2], 0, width)
|
255 |
+
box[1::2] = np.clip(box[1::2], 0, height)
|
256 |
+
boxes.append(box)
|
257 |
+
|
258 |
+
return boxes
|
259 |
+
|
260 |
+
|
261 |
+
def only_keep_largest_contour(mask: np.ndarray) -> List[np.ndarray]:
|
262 |
+
"""
|
263 |
+
Args:
|
264 |
+
mask: (h, w) 0~255
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
|
268 |
+
"""
|
269 |
+
_, thresh = cv2.threshold(mask, 127, 255, 0)
|
270 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
271 |
+
|
272 |
+
max_area = 0
|
273 |
+
max_index = -1
|
274 |
+
for i, cnt in enumerate(contours):
|
275 |
+
area = cv2.contourArea(cnt)
|
276 |
+
if area > max_area:
|
277 |
+
max_area = area
|
278 |
+
max_index = i
|
279 |
+
|
280 |
+
if max_index != -1:
|
281 |
+
new_mask = np.zeros_like(mask)
|
282 |
+
return cv2.drawContours(new_mask, contours, max_index, 255, -1)
|
283 |
+
else:
|
284 |
+
return mask
|
interactive_seg.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
from typing import Tuple, List
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from loguru import logger
|
8 |
+
from pydantic import BaseModel
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from helper import only_keep_largest_contour, load_jit_model
|
12 |
+
|
13 |
+
|
14 |
+
class Click(BaseModel):
|
15 |
+
# [y, x]
|
16 |
+
coords: Tuple[float, float]
|
17 |
+
is_positive: bool
|
18 |
+
indx: int
|
19 |
+
|
20 |
+
@property
|
21 |
+
def coords_and_indx(self):
|
22 |
+
return (*self.coords, self.indx)
|
23 |
+
|
24 |
+
def scale(self, x_ratio: float, y_ratio: float) -> 'Click':
|
25 |
+
return Click(
|
26 |
+
coords=(self.coords[0] * x_ratio, self.coords[1] * y_ratio),
|
27 |
+
is_positive=self.is_positive,
|
28 |
+
indx=self.indx
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
class ResizeTrans:
|
33 |
+
def __init__(self, size=480):
|
34 |
+
super().__init__()
|
35 |
+
self.crop_height = size
|
36 |
+
self.crop_width = size
|
37 |
+
|
38 |
+
def transform(self, image_nd, clicks_lists):
|
39 |
+
assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
|
40 |
+
image_height, image_width = image_nd.shape[2:4]
|
41 |
+
self.image_height = image_height
|
42 |
+
self.image_width = image_width
|
43 |
+
image_nd_r = F.interpolate(image_nd, (self.crop_height, self.crop_width), mode='bilinear', align_corners=True)
|
44 |
+
|
45 |
+
y_ratio = self.crop_height / image_height
|
46 |
+
x_ratio = self.crop_width / image_width
|
47 |
+
|
48 |
+
clicks_lists_resized = []
|
49 |
+
for clicks_list in clicks_lists:
|
50 |
+
clicks_list_resized = [click.scale(y_ratio, x_ratio) for click in clicks_list]
|
51 |
+
clicks_lists_resized.append(clicks_list_resized)
|
52 |
+
|
53 |
+
return image_nd_r, clicks_lists_resized
|
54 |
+
|
55 |
+
def inv_transform(self, prob_map):
|
56 |
+
new_prob_map = F.interpolate(prob_map, (self.image_height, self.image_width), mode='bilinear',
|
57 |
+
align_corners=True)
|
58 |
+
|
59 |
+
return new_prob_map
|
60 |
+
|
61 |
+
|
62 |
+
class ISPredictor(object):
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
model,
|
66 |
+
device,
|
67 |
+
open_kernel_size: int,
|
68 |
+
dilate_kernel_size: int,
|
69 |
+
net_clicks_limit=None,
|
70 |
+
zoom_in=None,
|
71 |
+
infer_size=384,
|
72 |
+
):
|
73 |
+
self.model = model
|
74 |
+
self.open_kernel_size = open_kernel_size
|
75 |
+
self.dilate_kernel_size = dilate_kernel_size
|
76 |
+
self.net_clicks_limit = net_clicks_limit
|
77 |
+
self.device = device
|
78 |
+
self.zoom_in = zoom_in
|
79 |
+
self.infer_size = infer_size
|
80 |
+
|
81 |
+
# self.transforms = [zoom_in] if zoom_in is not None else []
|
82 |
+
|
83 |
+
def __call__(self, input_image: torch.Tensor, clicks: List[Click], prev_mask):
|
84 |
+
"""
|
85 |
+
|
86 |
+
Args:
|
87 |
+
input_image: [1, 3, H, W] [0~1]
|
88 |
+
clicks: List[Click]
|
89 |
+
prev_mask: [1, 1, H, W]
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
|
93 |
+
"""
|
94 |
+
transforms = [ResizeTrans(self.infer_size)]
|
95 |
+
input_image = torch.cat((input_image, prev_mask), dim=1)
|
96 |
+
|
97 |
+
# image_nd resized to infer_size
|
98 |
+
for t in transforms:
|
99 |
+
image_nd, clicks_lists = t.transform(input_image, [clicks])
|
100 |
+
|
101 |
+
# image_nd.shape = [1, 4, 256, 256]
|
102 |
+
# points_nd.sha[e = [1, 2, 3]
|
103 |
+
# clicks_lists[0][0] Click 类
|
104 |
+
points_nd = self.get_points_nd(clicks_lists)
|
105 |
+
pred_logits = self.model(image_nd, points_nd)
|
106 |
+
pred = torch.sigmoid(pred_logits)
|
107 |
+
pred = self.post_process(pred)
|
108 |
+
|
109 |
+
prediction = F.interpolate(pred, mode='bilinear', align_corners=True,
|
110 |
+
size=image_nd.size()[2:])
|
111 |
+
|
112 |
+
for t in reversed(transforms):
|
113 |
+
prediction = t.inv_transform(prediction)
|
114 |
+
|
115 |
+
# if self.zoom_in is not None and self.zoom_in.check_possible_recalculation():
|
116 |
+
# return self.get_prediction(clicker)
|
117 |
+
|
118 |
+
return prediction.cpu().numpy()[0, 0]
|
119 |
+
|
120 |
+
def post_process(self, pred: torch.Tensor) -> torch.Tensor:
|
121 |
+
pred_mask = pred.cpu().numpy()[0][0]
|
122 |
+
# morph_open to remove small noise
|
123 |
+
kernel_size = self.open_kernel_size
|
124 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
|
125 |
+
pred_mask = cv2.morphologyEx(pred_mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
126 |
+
|
127 |
+
# Why dilate: make region slightly larger to avoid missing some pixels, this generally works better
|
128 |
+
dilate_kernel_size = self.dilate_kernel_size
|
129 |
+
if dilate_kernel_size > 1:
|
130 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_DILATE, (dilate_kernel_size, dilate_kernel_size))
|
131 |
+
pred_mask = cv2.dilate(pred_mask, kernel, 1)
|
132 |
+
return torch.from_numpy(pred_mask).unsqueeze(0).unsqueeze(0)
|
133 |
+
|
134 |
+
def get_points_nd(self, clicks_lists):
|
135 |
+
total_clicks = []
|
136 |
+
num_pos_clicks = [sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists]
|
137 |
+
num_neg_clicks = [len(clicks_list) - num_pos for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)]
|
138 |
+
num_max_points = max(num_pos_clicks + num_neg_clicks)
|
139 |
+
if self.net_clicks_limit is not None:
|
140 |
+
num_max_points = min(self.net_clicks_limit, num_max_points)
|
141 |
+
num_max_points = max(1, num_max_points)
|
142 |
+
|
143 |
+
for clicks_list in clicks_lists:
|
144 |
+
clicks_list = clicks_list[:self.net_clicks_limit]
|
145 |
+
pos_clicks = [click.coords_and_indx for click in clicks_list if click.is_positive]
|
146 |
+
pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [(-1, -1, -1)]
|
147 |
+
|
148 |
+
neg_clicks = [click.coords_and_indx for click in clicks_list if not click.is_positive]
|
149 |
+
neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [(-1, -1, -1)]
|
150 |
+
total_clicks.append(pos_clicks + neg_clicks)
|
151 |
+
|
152 |
+
return torch.tensor(total_clicks, device=self.device)
|
153 |
+
|
154 |
+
|
155 |
+
INTERACTIVE_SEG_MODEL_URL = os.environ.get(
|
156 |
+
"INTERACTIVE_SEG_MODEL_URL",
|
157 |
+
"https://github.com/Sanster/models/releases/download/clickseg_pplnet/clickseg_pplnet.pt",
|
158 |
+
)
|
159 |
+
INTERACTIVE_SEG_MODEL_MD5 = os.environ.get("INTERACTIVE_SEG_MODEL_MD5", "8ca44b6e02bca78f62ec26a3c32376cf")
|
160 |
+
|
161 |
+
|
162 |
+
class InteractiveSeg:
|
163 |
+
def __init__(self, infer_size=384, open_kernel_size=3, dilate_kernel_size=3):
|
164 |
+
device = torch.device('cpu')
|
165 |
+
model = load_jit_model(INTERACTIVE_SEG_MODEL_URL, device, INTERACTIVE_SEG_MODEL_MD5).eval()
|
166 |
+
self.predictor = ISPredictor(model, device,
|
167 |
+
infer_size=infer_size,
|
168 |
+
open_kernel_size=open_kernel_size,
|
169 |
+
dilate_kernel_size=dilate_kernel_size)
|
170 |
+
|
171 |
+
def __call__(self, image, clicks, prev_mask=None):
|
172 |
+
"""
|
173 |
+
|
174 |
+
Args:
|
175 |
+
image: [H,W,C] RGB
|
176 |
+
clicks:
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
|
180 |
+
"""
|
181 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
182 |
+
image = torch.from_numpy((image / 255).transpose(2, 0, 1)).unsqueeze(0).float()
|
183 |
+
if prev_mask is None:
|
184 |
+
mask = torch.zeros_like(image[:, :1, :, :])
|
185 |
+
else:
|
186 |
+
logger.info('InteractiveSeg run with prev_mask')
|
187 |
+
mask = torch.from_numpy(prev_mask / 255).unsqueeze(0).unsqueeze(0).float()
|
188 |
+
|
189 |
+
pred_probs = self.predictor(image, clicks, mask)
|
190 |
+
pred_mask = pred_probs > 0.5
|
191 |
+
pred_mask = (pred_mask * 255).astype(np.uint8)
|
192 |
+
|
193 |
+
# Find largest contour
|
194 |
+
# pred_mask = only_keep_largest_contour(pred_mask)
|
195 |
+
# To simplify frontend process, add mask brush color here
|
196 |
+
fg = pred_mask == 255
|
197 |
+
bg = pred_mask != 255
|
198 |
+
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_GRAY2BGRA)
|
199 |
+
# frontend brush color "ffcc00bb"
|
200 |
+
pred_mask[bg] = 0
|
201 |
+
pred_mask[fg] = [255, 203, 0, int(255 * 0.73)]
|
202 |
+
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_BGRA2RGBA)
|
203 |
+
return pred_mask
|
make_gif.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import math
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
|
7 |
+
|
8 |
+
def keep_ratio_resize(img, size, resample=Image.BILINEAR):
|
9 |
+
if img.width > img.height:
|
10 |
+
w = size
|
11 |
+
h = int(img.height * size / img.width)
|
12 |
+
else:
|
13 |
+
h = size
|
14 |
+
w = int(img.width * size / img.height)
|
15 |
+
return img.resize((w, h), resample)
|
16 |
+
|
17 |
+
|
18 |
+
def cubic_bezier(p1, p2, duration: int, frames: int):
|
19 |
+
"""
|
20 |
+
|
21 |
+
Args:
|
22 |
+
p1:
|
23 |
+
p2:
|
24 |
+
duration: Total duration of the curve
|
25 |
+
frames:
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
|
29 |
+
"""
|
30 |
+
x0, y0 = (0, 0)
|
31 |
+
x1, y1 = p1
|
32 |
+
x2, y2 = p2
|
33 |
+
x3, y3 = (1, 1)
|
34 |
+
|
35 |
+
def cal_y(t):
|
36 |
+
return math.pow(1 - t, 3) * y0 + \
|
37 |
+
3 * math.pow(1 - t, 2) * t * y1 + \
|
38 |
+
3 * (1 - t) * math.pow(t, 2) * y2 + \
|
39 |
+
math.pow(t, 3) * y3
|
40 |
+
|
41 |
+
def cal_x(t):
|
42 |
+
return math.pow(1 - t, 3) * x0 + \
|
43 |
+
3 * math.pow(1 - t, 2) * t * x1 + \
|
44 |
+
3 * (1 - t) * math.pow(t, 2) * x2 + \
|
45 |
+
math.pow(t, 3) * x3
|
46 |
+
|
47 |
+
res = []
|
48 |
+
for t in range(0, 1 * frames, duration):
|
49 |
+
t = t / frames
|
50 |
+
res.append((cal_x(t), cal_y(t)))
|
51 |
+
|
52 |
+
res.append((1, 0))
|
53 |
+
return res
|
54 |
+
|
55 |
+
|
56 |
+
def make_compare_gif(
|
57 |
+
clean_img: Image.Image,
|
58 |
+
src_img: Image.Image,
|
59 |
+
max_side_length: int = 600,
|
60 |
+
splitter_width: int = 5,
|
61 |
+
splitter_color=(255, 203, 0, int(255 * 0.73))
|
62 |
+
):
|
63 |
+
if clean_img.size != src_img.size:
|
64 |
+
clean_img = clean_img.resize(src_img.size, Image.BILINEAR)
|
65 |
+
|
66 |
+
duration_per_frame = 20
|
67 |
+
num_frames = 50
|
68 |
+
# erase-in-out
|
69 |
+
cubic_bezier_points = cubic_bezier((0.33, 0), (0.66, 1), 1, num_frames)
|
70 |
+
cubic_bezier_points.reverse()
|
71 |
+
|
72 |
+
max_side_length = min(max_side_length, max(clean_img.size))
|
73 |
+
|
74 |
+
src_img = keep_ratio_resize(src_img, max_side_length)
|
75 |
+
clean_img = keep_ratio_resize(clean_img, max_side_length)
|
76 |
+
width, height = src_img.size
|
77 |
+
|
78 |
+
# Generate images to make Gif from right to left
|
79 |
+
images = []
|
80 |
+
|
81 |
+
for i in range(num_frames):
|
82 |
+
new_frame = Image.new('RGB', (width, height))
|
83 |
+
new_frame.paste(clean_img, (0, 0))
|
84 |
+
|
85 |
+
left = int(cubic_bezier_points[i][0] * width)
|
86 |
+
cropped_src_img = src_img.crop((left, 0, width, height))
|
87 |
+
new_frame.paste(cropped_src_img, (left, 0, width, height))
|
88 |
+
if i != num_frames - 1:
|
89 |
+
# draw a yellow splitter on the edge of the cropped image
|
90 |
+
draw = ImageDraw.Draw(new_frame)
|
91 |
+
draw.line([(left, 0), (left, height)], width=splitter_width, fill=splitter_color)
|
92 |
+
images.append(new_frame)
|
93 |
+
|
94 |
+
for i in range(10):
|
95 |
+
images.append(src_img)
|
96 |
+
|
97 |
+
cubic_bezier_points.reverse()
|
98 |
+
# Generate images to make Gif from left to right
|
99 |
+
for i in range(num_frames):
|
100 |
+
new_frame = Image.new('RGB', (width, height))
|
101 |
+
new_frame.paste(src_img, (0, 0))
|
102 |
+
|
103 |
+
right = int(cubic_bezier_points[i][0] * width)
|
104 |
+
cropped_src_img = clean_img.crop((0, 0, right, height))
|
105 |
+
new_frame.paste(cropped_src_img, (0, 0, right, height))
|
106 |
+
if i != num_frames - 1:
|
107 |
+
# draw a yellow splitter on the edge of the cropped image
|
108 |
+
draw = ImageDraw.Draw(new_frame)
|
109 |
+
draw.line([(right, 0), (right, height)], width=splitter_width, fill=splitter_color)
|
110 |
+
images.append(new_frame)
|
111 |
+
|
112 |
+
images.append(clean_img)
|
113 |
+
|
114 |
+
img_byte_arr = io.BytesIO()
|
115 |
+
clean_img.save(
|
116 |
+
img_byte_arr,
|
117 |
+
format='GIF',
|
118 |
+
save_all=True,
|
119 |
+
include_color_table=True,
|
120 |
+
append_images=images,
|
121 |
+
optimize=False,
|
122 |
+
duration=duration_per_frame,
|
123 |
+
loop=0
|
124 |
+
)
|
125 |
+
return img_byte_arr.getvalue()
|
model/__init__.py
ADDED
File without changes
|
model/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (160 Bytes). View file
|
|
model/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (160 Bytes). View file
|
|
model/__pycache__/base.cpython-38.pyc
ADDED
Binary file (7.82 kB). View file
|
|
model/__pycache__/base.cpython-39.pyc
ADDED
Binary file (7.8 kB). View file
|
|
model/__pycache__/fcf.cpython-38.pyc
ADDED
Binary file (34.2 kB). View file
|
|
model/__pycache__/instruct_pix2pix.cpython-38.pyc
ADDED
Binary file (2.78 kB). View file
|
|
model/__pycache__/lama.cpython-38.pyc
ADDED
Binary file (1.84 kB). View file
|
|