cnmoro commited on
Commit
7b3c60c
·
verified ·
1 Parent(s): c3c1ac5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -44
app.py CHANGED
@@ -2,28 +2,14 @@ import time, aiohttp, asyncio, json, os, multiprocessing, torch
2
  from minivectordb.embedding_model import EmbeddingModel
3
  from minivectordb.vector_database import VectorDatabase
4
  from text_util_en_pt.cleaner import structurize_text, detect_language, Language
5
- from transformers import AutoModelForCausalLM, AutoTokenizer
6
- from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
7
  from webtextcrawler.webtextcrawler import extract_text_from_url
8
- from threading import Thread
9
  from duckduckgo_search import DDGS
10
  import gradio as gr
11
 
12
  torch.set_num_threads(2)
13
 
 
14
  model = EmbeddingModel(use_quantized_onnx_model=True)
15
- tokenizer = AutoTokenizer.from_pretrained("sreeramajay/TinyLlama-1.1B-orca-v1.0")
16
- llm = AutoModelForCausalLM.from_pretrained("sreeramajay/TinyLlama-1.1B-orca-v1.0")
17
-
18
- prompt_template = """<|system|>
19
- You are a helpful assistant chatbot.</s>
20
- <|user|>
21
- $PROMPT</s>
22
- <|assistant|>
23
- """
24
-
25
- def count_tokens(text):
26
- return len(tokenizer.encode(text))
27
 
28
  def fetch_links(query, max_results=5):
29
  with DDGS() as ddgs:
@@ -50,7 +36,7 @@ def index_and_search(query, text):
50
 
51
  # Retrieval
52
  start = time.time()
53
- search_results = vector_db.find_most_similar(query_embedding, k = 5)
54
  retrieval_time = time.time() - start
55
  return '\n'.join([s['sentence'] for s in search_results[2]]), embedding_time, retrieval_time
56
 
@@ -67,30 +53,7 @@ def retrieval_pipeline(query):
67
 
68
  return context, websearch_time, webcrawl_time, embedding_time, retrieval_time, links
69
 
70
- def ask_open_llm(prompt):
71
- model_inputs = tokenizer([
72
- prompt
73
- ], return_tensors="pt")
74
-
75
- streamer = TextIteratorStreamer(tokenizer, timeout=120., skip_prompt=True, skip_special_tokens=True)
76
-
77
- generate_kwargs = dict(
78
- model_inputs,
79
- streamer=streamer,
80
- max_new_tokens=2048 - count_tokens(prompt),
81
- do_sample=True,
82
- temperature=0.7,
83
- top_p=0.9,
84
- repetition_penalty=2.5
85
- )
86
- t = Thread(target=llm.generate, kwargs=generate_kwargs)
87
- t.start() # Starting the generation in a separate thread.
88
- partial_message = ""
89
- for new_token in streamer:
90
- partial_message += new_token
91
- yield partial_message
92
-
93
- def predict(message, history):
94
  context, websearch_time, webcrawl_time, embedding_time, retrieval_time, links = retrieval_pipeline(message)
95
 
96
  if detect_language(message) == Language.ptbr:
@@ -98,14 +61,49 @@ def predict(message, history):
98
  else:
99
  prompt = f"Context:\n\n{context}\n\nBased on the context, answer: {message}"
100
 
101
- prompt = prompt_template.replace("$PROMPT", prompt)
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  full_response = ""
104
- for partial_message in ask_open_llm(prompt):
105
- full_response += partial_message
106
- yield full_response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  final_metadata_block = ""
 
109
  final_metadata_block += f"Links visited:\n"
110
  for link in links:
111
  final_metadata_block += f"{link}\n"
 
2
  from minivectordb.embedding_model import EmbeddingModel
3
  from minivectordb.vector_database import VectorDatabase
4
  from text_util_en_pt.cleaner import structurize_text, detect_language, Language
 
 
5
  from webtextcrawler.webtextcrawler import extract_text_from_url
 
6
  from duckduckgo_search import DDGS
7
  import gradio as gr
8
 
9
  torch.set_num_threads(2)
10
 
11
+ openrouter_key = os.environ.get("OPENROUTER_KEY")
12
  model = EmbeddingModel(use_quantized_onnx_model=True)
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  def fetch_links(query, max_results=5):
15
  with DDGS() as ddgs:
 
36
 
37
  # Retrieval
38
  start = time.time()
39
+ search_results = vector_db.find_most_similar(query_embedding, k = 12)
40
  retrieval_time = time.time() - start
41
  return '\n'.join([s['sentence'] for s in search_results[2]]), embedding_time, retrieval_time
42
 
 
53
 
54
  return context, websearch_time, webcrawl_time, embedding_time, retrieval_time, links
55
 
56
+ async def predict(message, history):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  context, websearch_time, webcrawl_time, embedding_time, retrieval_time, links = retrieval_pipeline(message)
58
 
59
  if detect_language(message) == Language.ptbr:
 
61
  else:
62
  prompt = f"Context:\n\n{context}\n\nBased on the context, answer: {message}"
63
 
64
+ url = "https://openrouter.ai/api/v1/chat/completions"
65
+ headers = { "Content-Type": "application/json",
66
+ "Authorization": f"Bearer {openrouter_key}" }
67
+ body = { "stream": True,
68
+ "models": [
69
+ "mistralai/mistral-7b-instruct:free",
70
+ "nousresearch/nous-capybara-7b:free",
71
+ "huggingfaceh4/zephyr-7b-beta:free"
72
+ ],
73
+ "route": "fallback",
74
+ "max_tokens": 768,
75
+ "messages": [
76
+ {"role": "user", "content": prompt}
77
+ ] }
78
 
79
  full_response = ""
80
+ async with aiohttp.ClientSession() as session:
81
+ async with session.post(url, headers=headers, json=body) as response:
82
+ buffer = "" # A buffer to hold incomplete lines of data
83
+ async for chunk in response.content.iter_any():
84
+ buffer += chunk.decode()
85
+ while "\n" in buffer: # Process as long as there are complete lines in the buffer
86
+ line, buffer = buffer.split("\n", 1)
87
+
88
+ if line.startswith("data: "):
89
+ event_data = line[len("data: "):]
90
+ if event_data != '[DONE]':
91
+ try:
92
+ current_text = json.loads(event_data)['choices'][0]['delta']['content']
93
+ full_response += current_text
94
+ yield full_response
95
+ await asyncio.sleep(0.01)
96
+ except Exception:
97
+ try:
98
+ current_text = json.loads(event_data)['choices'][0]['text']
99
+ full_response += current_text
100
+ yield full_response
101
+ await asyncio.sleep(0.01)
102
+ except Exception:
103
+ pass
104
 
105
  final_metadata_block = ""
106
+
107
  final_metadata_block += f"Links visited:\n"
108
  for link in links:
109
  final_metadata_block += f"{link}\n"