cnmoro commited on
Commit
99b37ed
·
verified ·
1 Parent(s): 2d3a993

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import time, aiohttp, asyncio, json, os, multiprocessing
2
  from minivectordb.embedding_model import EmbeddingModel
3
  from minivectordb.vector_database import VectorDatabase
4
  from text_util_en_pt.cleaner import structurize_text, detect_language, Language
@@ -6,15 +6,17 @@ from webtextcrawler.webtextcrawler import extract_text_from_url
6
  from duckduckgo_search import DDGS
7
  import gradio as gr
8
 
 
 
9
  openrouter_key = os.environ.get("OPENROUTER_KEY")
10
- model = EmbeddingModel(use_quantized_onnx_model=False, e5_model_size='small')
11
 
12
- def fetch_links(query, max_results=10):
13
  with DDGS() as ddgs:
14
  return [r['href'] for r in ddgs.text(query, max_results=max_results)]
15
 
16
  def fetch_texts(links):
17
- with multiprocessing.Pool() as pool:
18
  texts = pool.map(extract_text_from_url, links)
19
  return '\n'.join([t for t in texts if t])
20
 
@@ -34,7 +36,7 @@ def index_and_search(query, text):
34
 
35
  # Retrieval
36
  start = time.time()
37
- search_results = vector_db.find_most_similar(query_embedding, k = 10)
38
  retrieval_time = time.time() - start
39
  return '\n'.join([s['sentence'] for s in search_results[2]]), embedding_time, retrieval_time
40
 
@@ -117,13 +119,13 @@ async def predict(message, history):
117
  # Setting up the Gradio chat interface.
118
  gr.ChatInterface(
119
  predict,
120
- title="AI Web Search",
121
  description="Ask any question, and I will try to answer it using web search !",
122
  retry_btn=None,
123
  undo_btn=None,
124
  examples=[
125
  'When did the first human land on the moon?',
126
- 'Liquid vs solid vs gas ?',
127
  'What is the capital of France?',
128
  'Why does Brazil has a high tax rate?'
129
  ]
 
1
+ import time, aiohttp, asyncio, json, os, multiprocessing, torch
2
  from minivectordb.embedding_model import EmbeddingModel
3
  from minivectordb.vector_database import VectorDatabase
4
  from text_util_en_pt.cleaner import structurize_text, detect_language, Language
 
6
  from duckduckgo_search import DDGS
7
  import gradio as gr
8
 
9
+ torch.set_num_threads(2)
10
+
11
  openrouter_key = os.environ.get("OPENROUTER_KEY")
12
+ model = EmbeddingModel(use_quantized_onnx_model=True)
13
 
14
+ def fetch_links(query, max_results=5):
15
  with DDGS() as ddgs:
16
  return [r['href'] for r in ddgs.text(query, max_results=max_results)]
17
 
18
  def fetch_texts(links):
19
+ with multiprocessing.Pool(5) as pool:
20
  texts = pool.map(extract_text_from_url, links)
21
  return '\n'.join([t for t in texts if t])
22
 
 
36
 
37
  # Retrieval
38
  start = time.time()
39
+ search_results = vector_db.find_most_similar(query_embedding, k = 12)
40
  retrieval_time = time.time() - start
41
  return '\n'.join([s['sentence'] for s in search_results[2]]), embedding_time, retrieval_time
42
 
 
119
  # Setting up the Gradio chat interface.
120
  gr.ChatInterface(
121
  predict,
122
+ title="Web Search with LLM !",
123
  description="Ask any question, and I will try to answer it using web search !",
124
  retry_btn=None,
125
  undo_btn=None,
126
  examples=[
127
  'When did the first human land on the moon?',
128
+ 'Liquid vs solid vs gas?',
129
  'What is the capital of France?',
130
  'Why does Brazil has a high tax rate?'
131
  ]