|
|
|
|
|
|
|
import glob
|
|
import os
|
|
import matplotlib
|
|
import torch
|
|
from torch.nn.utils import weight_norm
|
|
|
|
matplotlib.use("Agg")
|
|
import matplotlib.pylab as plt
|
|
from .meldataset import MAX_WAV_VALUE
|
|
from scipy.io.wavfile import write
|
|
|
|
|
|
def plot_spectrogram(spectrogram):
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
plt.colorbar(im, ax=ax)
|
|
|
|
fig.canvas.draw()
|
|
plt.close()
|
|
|
|
return fig
|
|
|
|
|
|
def plot_spectrogram_clipped(spectrogram, clip_max=2.0):
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(
|
|
spectrogram,
|
|
aspect="auto",
|
|
origin="lower",
|
|
interpolation="none",
|
|
vmin=1e-6,
|
|
vmax=clip_max,
|
|
)
|
|
plt.colorbar(im, ax=ax)
|
|
|
|
fig.canvas.draw()
|
|
plt.close()
|
|
|
|
return fig
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
m.weight.data.normal_(mean, std)
|
|
|
|
|
|
def apply_weight_norm(m):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
weight_norm(m)
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
def load_checkpoint(filepath, device):
|
|
assert os.path.isfile(filepath)
|
|
print(f"Loading '{filepath}'")
|
|
checkpoint_dict = torch.load(filepath, map_location=device)
|
|
print("Complete.")
|
|
return checkpoint_dict
|
|
|
|
|
|
def save_checkpoint(filepath, obj):
|
|
print(f"Saving checkpoint to {filepath}")
|
|
torch.save(obj, filepath)
|
|
print("Complete.")
|
|
|
|
|
|
def scan_checkpoint(cp_dir, prefix, renamed_file=None):
|
|
|
|
pattern = os.path.join(cp_dir, prefix + "????????")
|
|
cp_list = glob.glob(pattern)
|
|
|
|
if len(cp_list) > 0:
|
|
last_checkpoint_path = sorted(cp_list)[-1]
|
|
print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'")
|
|
return last_checkpoint_path
|
|
|
|
|
|
if renamed_file:
|
|
renamed_path = os.path.join(cp_dir, renamed_file)
|
|
if os.path.isfile(renamed_path):
|
|
print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'")
|
|
return renamed_path
|
|
|
|
return None
|
|
|
|
|
|
def save_audio(audio, path, sr):
|
|
|
|
audio = audio * MAX_WAV_VALUE
|
|
audio = audio.cpu().numpy().astype("int16")
|
|
write(path, sr, audio)
|
|
|