Seed-VC / modules /length_regulator.py
Plachta's picture
Update modules/length_regulator.py
7cc6f3b verified
raw
history blame
6.07 kB
from typing import Tuple
import torch
import torch.nn as nn
from torch.nn import functional as F
from modules.commons import sequence_mask
import numpy as np
from dac.nn.quantize import VectorQuantize
# f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
def f0_to_coarse(f0, f0_bin):
f0_mel = 1127 * (1 + f0 / 700).log()
a = (f0_bin - 2) / (f0_mel_max - f0_mel_min)
b = f0_mel_min * a - 1.
f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel)
# torch.clip_(f0_mel, min=1., max=float(f0_bin - 1))
f0_coarse = torch.round(f0_mel).long()
f0_coarse = f0_coarse * (f0_coarse > 0)
f0_coarse = f0_coarse + ((f0_coarse < 1) * 1)
f0_coarse = f0_coarse * (f0_coarse < f0_bin)
f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1))
return f0_coarse
class InterpolateRegulator(nn.Module):
def __init__(
self,
channels: int,
sampling_ratios: Tuple,
is_discrete: bool = False,
in_channels: int = None, # only applies to continuous input
vector_quantize: bool = False, # whether to use vector quantization, only applies to continuous input
codebook_size: int = 1024, # for discrete only
out_channels: int = None,
groups: int = 1,
n_codebooks: int = 1, # number of codebooks
quantizer_dropout: float = 0.0, # dropout for quantizer
f0_condition: bool = False,
n_f0_bins: int = 512,
):
super().__init__()
self.sampling_ratios = sampling_ratios
out_channels = out_channels or channels
model = nn.ModuleList([])
if len(sampling_ratios) > 0:
self.interpolate = True
for _ in sampling_ratios:
module = nn.Conv1d(channels, channels, 3, 1, 1)
norm = nn.GroupNorm(groups, channels)
act = nn.Mish()
model.extend([module, norm, act])
else:
self.interpolate = False
model.append(
nn.Conv1d(channels, out_channels, 1, 1)
)
self.model = nn.Sequential(*model)
self.embedding = nn.Embedding(codebook_size, channels)
self.is_discrete = is_discrete
self.mask_token = nn.Parameter(torch.zeros(1, channels))
self.n_codebooks = n_codebooks
if n_codebooks > 1:
self.extra_codebooks = nn.ModuleList([
nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1)
])
self.extra_codebook_mask_tokens = nn.ParameterList([
nn.Parameter(torch.zeros(1, channels)) for _ in range(n_codebooks - 1)
])
self.quantizer_dropout = quantizer_dropout
if f0_condition:
self.f0_embedding = nn.Embedding(n_f0_bins, channels)
self.f0_condition = f0_condition
self.n_f0_bins = n_f0_bins
self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins)
self.f0_mask = nn.Parameter(torch.zeros(1, channels))
else:
self.f0_condition = False
if not is_discrete:
self.content_in_proj = nn.Linear(in_channels, channels)
if vector_quantize:
self.vq = VectorQuantize(channels, codebook_size, 8)
def forward(self, x, ylens=None, n_quantizers=None, f0=None):
# apply token drop
if self.training:
n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks
dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],))
n_dropout = int(x.shape[0] * self.quantizer_dropout)
n_quantizers[:n_dropout] = dropout[:n_dropout]
n_quantizers = n_quantizers.to(x.device)
# decide whether to drop for each sample in batch
else:
n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers)
if self.is_discrete:
if self.n_codebooks > 1:
assert len(x.size()) == 3
x_emb = self.embedding(x[:, 0])
for i, emb in enumerate(self.extra_codebooks):
x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1])
# add mask token if not using this codebook
# x_emb = x_emb + (n_quantizers <= i+1)[..., None, None] * self.extra_codebook_mask_tokens[i]
x = x_emb
elif self.n_codebooks == 1:
if len(x.size()) == 2:
x = self.embedding(x)
else:
x = self.embedding(x[:, 0])
else:
x = self.content_in_proj(x)
# x in (B, T, D)
mask = sequence_mask(ylens).unsqueeze(-1)
if self.interpolate:
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
else:
x = x.transpose(1, 2).contiguous()
mask = mask[:, :x.size(2), :]
ylens = ylens.clamp(max=x.size(2)).long()
if self.f0_condition:
if f0 is None:
x = x + self.f0_mask.unsqueeze(-1)
else:
#quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) # (N, T)
quantized_f0 = f0_to_coarse(f0, self.n_f0_bins)
quantized_f0 = quantized_f0.clamp(0, self.n_f0_bins - 1).long()
f0_emb = self.f0_embedding(quantized_f0)
f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
x = x + f0_emb
out = self.model(x).transpose(1, 2).contiguous()
if hasattr(self, 'vq'):
out_q, commitment_loss, codebook_loss, codes, out, = self.vq(out.transpose(1, 2))
out_q = out_q.transpose(1, 2)
return out_q * mask, ylens, codes, commitment_loss, codebook_loss
olens = ylens
return out * mask, olens, None, None, None