|
import torch |
|
from torch import nn |
|
import math |
|
|
|
from modules.gpt_fast.model import ModelArgs, Transformer |
|
|
|
from modules.wavenet import WN |
|
from modules.commons import sequence_mask |
|
|
|
from torch.nn.utils import weight_norm |
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
self.max_period = 10000 |
|
self.scale = 1000 |
|
|
|
half = frequency_embedding_size // 2 |
|
freqs = torch.exp( |
|
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
) |
|
self.register_buffer("freqs", freqs) |
|
|
|
def timestep_embedding(self, t): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
|
|
args = self.scale * t[:, None].float() * self.freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if self.frequency_embedding_size % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class StyleEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, input_size, hidden_size, dropout_prob): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size) |
|
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True)) |
|
self.input_size = input_size |
|
self.dropout_prob = dropout_prob |
|
|
|
def forward(self, labels, train, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
labels = self.token_drop(labels, force_drop_ids) |
|
else: |
|
labels = self.style_in(labels) |
|
embeddings = labels |
|
return embeddings |
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of DiT. |
|
""" |
|
def __init__(self, hidden_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, 2 * hidden_size, bias=True) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
class DiT(torch.nn.Module): |
|
def __init__( |
|
self, |
|
args |
|
): |
|
super(DiT, self).__init__() |
|
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False |
|
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False |
|
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False |
|
model_args = ModelArgs( |
|
block_size=16384, |
|
n_layer=args.DiT.depth, |
|
n_head=args.DiT.num_heads, |
|
dim=args.DiT.hidden_dim, |
|
head_dim=args.DiT.hidden_dim // args.DiT.num_heads, |
|
vocab_size=1024, |
|
uvit_skip_connection=self.uvit_skip_connection, |
|
) |
|
self.transformer = Transformer(model_args) |
|
self.in_channels = args.DiT.in_channels |
|
self.out_channels = args.DiT.in_channels |
|
self.num_heads = args.DiT.num_heads |
|
|
|
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True)) |
|
|
|
self.content_type = args.DiT.content_type |
|
self.content_codebook_size = args.DiT.content_codebook_size |
|
self.content_dim = args.DiT.content_dim |
|
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) |
|
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) |
|
|
|
self.is_causal = args.DiT.is_causal |
|
|
|
self.n_f0_bins = args.DiT.n_f0_bins |
|
self.f0_bins = torch.arange(2, 1024, 1024 // args.DiT.n_f0_bins) |
|
self.f0_embedder = nn.Embedding(args.DiT.n_f0_bins, args.DiT.hidden_dim) |
|
self.f0_condition = args.DiT.f0_condition |
|
|
|
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim) |
|
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim) |
|
|
|
|
|
|
|
input_pos = torch.arange(16384) |
|
self.register_buffer("input_pos", input_pos) |
|
|
|
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim) |
|
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1) |
|
self.final_layer_type = args.DiT.final_layer_type |
|
if self.final_layer_type == 'wavenet': |
|
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim, |
|
kernel_size=args.wavenet.kernel_size, |
|
dilation_rate=args.wavenet.dilation_rate, |
|
n_layers=args.wavenet.num_layers, |
|
gin_channels=args.wavenet.hidden_dim, |
|
p_dropout=args.wavenet.p_dropout, |
|
causal=False) |
|
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim) |
|
else: |
|
self.final_mlp = nn.Sequential( |
|
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim), |
|
nn.SiLU(), |
|
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels), |
|
) |
|
self.transformer_style_condition = args.DiT.style_condition |
|
self.wavenet_style_condition = args.wavenet.style_condition |
|
assert args.DiT.style_condition == args.wavenet.style_condition |
|
|
|
self.class_dropout_prob = args.DiT.class_dropout_prob |
|
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim) |
|
self.res_projection = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim) |
|
self.long_skip_connection = args.DiT.long_skip_connection |
|
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim) |
|
|
|
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 + |
|
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token), |
|
args.DiT.hidden_dim) |
|
if self.style_as_token: |
|
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim) |
|
|
|
def setup_caches(self, max_batch_size, max_seq_length): |
|
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False) |
|
def forward(self, x, prompt_x, x_lens, t, style, cond, f0=None, mask_content=False): |
|
class_dropout = False |
|
if self.training and torch.rand(1) < self.class_dropout_prob: |
|
class_dropout = True |
|
if not self.training and mask_content: |
|
class_dropout = True |
|
|
|
cond_in_module = self.cond_projection |
|
|
|
B, _, T = x.size() |
|
|
|
|
|
t1 = self.t_embedder(t) |
|
|
|
cond = cond_in_module(cond) |
|
if self.f0_condition and f0 is not None: |
|
quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) |
|
cond = cond + self.f0_embedder(quantized_f0) |
|
|
|
x = x.transpose(1, 2) |
|
prompt_x = prompt_x.transpose(1, 2) |
|
|
|
x_in = torch.cat([x, prompt_x, cond], dim=-1) |
|
if self.transformer_style_condition and not self.style_as_token: |
|
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1) |
|
if class_dropout: |
|
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0 |
|
x_in = self.cond_x_merge_linear(x_in) |
|
|
|
if self.style_as_token: |
|
style = self.style_in(style) |
|
style = torch.zeros_like(style) if class_dropout else style |
|
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1) |
|
if self.time_as_token: |
|
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1) |
|
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1) |
|
input_pos = self.input_pos[:x_in.size(1)] |
|
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None |
|
x_res = self.transformer(x_in, None if self.time_as_token else t1.unsqueeze(1), input_pos, x_mask_expanded) |
|
x_res = x_res[:, 1:] if self.time_as_token else x_res |
|
x_res = x_res[:, 1:] if self.style_as_token else x_res |
|
if self.long_skip_connection: |
|
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1)) |
|
if self.final_layer_type == 'wavenet': |
|
x = self.conv1(x_res) |
|
x = x.transpose(1, 2) |
|
t2 = self.t_embedder2(t) |
|
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection( |
|
x_res) |
|
x = self.final_layer(x, t1).transpose(1, 2) |
|
x = self.conv2(x) |
|
else: |
|
x = self.final_mlp(x_res) |
|
x = x.transpose(1, 2) |
|
return x |
|
|