|
from typing import Tuple |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from modules.commons import sequence_mask |
|
import numpy as np |
|
from dac.nn.quantize import VectorQuantize |
|
|
|
|
|
f0_max = 1100.0 |
|
f0_min = 50.0 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
def f0_to_coarse(f0, f0_bin): |
|
f0_mel = 1127 * (1 + f0 / 700).log() |
|
a = (f0_bin - 2) / (f0_mel_max - f0_mel_min) |
|
b = f0_mel_min * a - 1. |
|
f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel) |
|
|
|
f0_coarse = torch.round(f0_mel).long() |
|
f0_coarse = f0_coarse * (f0_coarse > 0) |
|
f0_coarse = f0_coarse + ((f0_coarse < 1) * 1) |
|
f0_coarse = f0_coarse * (f0_coarse < f0_bin) |
|
f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1)) |
|
return f0_coarse |
|
|
|
class InterpolateRegulator(nn.Module): |
|
def __init__( |
|
self, |
|
channels: int, |
|
sampling_ratios: Tuple, |
|
is_discrete: bool = False, |
|
in_channels: int = None, |
|
vector_quantize: bool = False, |
|
codebook_size: int = 1024, |
|
out_channels: int = None, |
|
groups: int = 1, |
|
n_codebooks: int = 1, |
|
quantizer_dropout: float = 0.0, |
|
f0_condition: bool = False, |
|
n_f0_bins: int = 512, |
|
): |
|
super().__init__() |
|
self.sampling_ratios = sampling_ratios |
|
out_channels = out_channels or channels |
|
model = nn.ModuleList([]) |
|
if len(sampling_ratios) > 0: |
|
self.interpolate = True |
|
for _ in sampling_ratios: |
|
module = nn.Conv1d(channels, channels, 3, 1, 1) |
|
norm = nn.GroupNorm(groups, channels) |
|
act = nn.Mish() |
|
model.extend([module, norm, act]) |
|
else: |
|
self.interpolate = False |
|
model.append( |
|
nn.Conv1d(channels, out_channels, 1, 1) |
|
) |
|
self.model = nn.Sequential(*model) |
|
self.embedding = nn.Embedding(codebook_size, channels) |
|
self.is_discrete = is_discrete |
|
|
|
self.mask_token = nn.Parameter(torch.zeros(1, channels)) |
|
|
|
self.n_codebooks = n_codebooks |
|
if n_codebooks > 1: |
|
self.extra_codebooks = nn.ModuleList([ |
|
nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1) |
|
]) |
|
self.extra_codebook_mask_tokens = nn.ParameterList([ |
|
nn.Parameter(torch.zeros(1, channels)) for _ in range(n_codebooks - 1) |
|
]) |
|
self.quantizer_dropout = quantizer_dropout |
|
|
|
if f0_condition: |
|
self.f0_embedding = nn.Embedding(n_f0_bins, channels) |
|
self.f0_condition = f0_condition |
|
self.n_f0_bins = n_f0_bins |
|
self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins) |
|
self.f0_mask = nn.Parameter(torch.zeros(1, channels)) |
|
else: |
|
self.f0_condition = False |
|
|
|
if not is_discrete: |
|
self.content_in_proj = nn.Linear(in_channels, channels) |
|
if vector_quantize: |
|
self.vq = VectorQuantize(channels, codebook_size, 8) |
|
|
|
def forward(self, x, ylens=None, n_quantizers=None, f0=None): |
|
|
|
if self.training: |
|
n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks |
|
dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],)) |
|
n_dropout = int(x.shape[0] * self.quantizer_dropout) |
|
n_quantizers[:n_dropout] = dropout[:n_dropout] |
|
n_quantizers = n_quantizers.to(x.device) |
|
|
|
else: |
|
n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers) |
|
if self.is_discrete: |
|
if self.n_codebooks > 1: |
|
assert len(x.size()) == 3 |
|
x_emb = self.embedding(x[:, 0]) |
|
for i, emb in enumerate(self.extra_codebooks): |
|
x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1]) |
|
|
|
|
|
x = x_emb |
|
elif self.n_codebooks == 1: |
|
if len(x.size()) == 2: |
|
x = self.embedding(x) |
|
else: |
|
x = self.embedding(x[:, 0]) |
|
else: |
|
x = self.content_in_proj(x) |
|
|
|
mask = sequence_mask(ylens).unsqueeze(-1) |
|
if self.interpolate: |
|
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest') |
|
else: |
|
x = x.transpose(1, 2).contiguous() |
|
mask = mask[:, :x.size(2), :] |
|
ylens = ylens.clamp(max=x.size(2)).long() |
|
if self.f0_condition: |
|
if f0 is None: |
|
x = x + self.f0_mask.unsqueeze(-1) |
|
else: |
|
|
|
quantized_f0 = f0_to_coarse(f0, self.n_f0_bins) |
|
quantized_f0 = quantized_f0.clamp(0, self.n_f0_bins - 1).long() |
|
f0_emb = self.f0_embedding(quantized_f0) |
|
f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest') |
|
x = x + f0_emb |
|
out = self.model(x).transpose(1, 2).contiguous() |
|
if hasattr(self, 'vq'): |
|
out_q, commitment_loss, codebook_loss, codes, out, = self.vq(out.transpose(1, 2)) |
|
out_q = out_q.transpose(1, 2) |
|
return out_q * mask, ylens, codes, commitment_loss, codebook_loss |
|
olens = ylens |
|
return out * mask, olens, None, None, None |
|
|