|
from dac.nn.quantize import ResidualVectorQuantize
|
|
from torch import nn
|
|
from modules.wavenet import WN
|
|
import torch
|
|
import torchaudio
|
|
import torchaudio.functional as audio_F
|
|
import numpy as np
|
|
from .alias_free_torch import *
|
|
from torch.nn.utils import weight_norm
|
|
from torch import nn, sin, pow
|
|
from einops.layers.torch import Rearrange
|
|
from dac.model.encodec import SConv1d
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, nn.Conv1d):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
|
|
def WNConv1d(*args, **kwargs):
|
|
return weight_norm(nn.Conv1d(*args, **kwargs))
|
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs):
|
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
|
|
|
class SnakeBeta(nn.Module):
|
|
"""
|
|
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
|
Shape:
|
|
- Input: (B, C, T)
|
|
- Output: (B, C, T), same shape as the input
|
|
Parameters:
|
|
- alpha - trainable parameter that controls frequency
|
|
- beta - trainable parameter that controls magnitude
|
|
References:
|
|
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
|
https://arxiv.org/abs/2006.08195
|
|
Examples:
|
|
>>> a1 = snakebeta(256)
|
|
>>> x = torch.randn(256)
|
|
>>> x = a1(x)
|
|
"""
|
|
|
|
def __init__(
|
|
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
|
):
|
|
"""
|
|
Initialization.
|
|
INPUT:
|
|
- in_features: shape of the input
|
|
- alpha - trainable parameter that controls frequency
|
|
- beta - trainable parameter that controls magnitude
|
|
alpha is initialized to 1 by default, higher values = higher-frequency.
|
|
beta is initialized to 1 by default, higher values = higher-magnitude.
|
|
alpha will be trained along with the rest of your model.
|
|
"""
|
|
super(SnakeBeta, self).__init__()
|
|
self.in_features = in_features
|
|
|
|
|
|
self.alpha_logscale = alpha_logscale
|
|
if self.alpha_logscale:
|
|
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
|
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
|
else:
|
|
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
|
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
|
|
|
self.alpha.requires_grad = alpha_trainable
|
|
self.beta.requires_grad = alpha_trainable
|
|
|
|
self.no_div_by_zero = 0.000000001
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the function.
|
|
Applies the function to the input elementwise.
|
|
SnakeBeta := x + 1/b * sin^2 (xa)
|
|
"""
|
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1)
|
|
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
|
if self.alpha_logscale:
|
|
alpha = torch.exp(alpha)
|
|
beta = torch.exp(beta)
|
|
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
|
|
|
return x
|
|
|
|
class ResidualUnit(nn.Module):
|
|
def __init__(self, dim: int = 16, dilation: int = 1):
|
|
super().__init__()
|
|
pad = ((7 - 1) * dilation) // 2
|
|
self.block = nn.Sequential(
|
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
|
|
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
|
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
|
|
WNConv1d(dim, dim, kernel_size=1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return x + self.block(x)
|
|
|
|
class CNNLSTM(nn.Module):
|
|
def __init__(self, indim, outdim, head, global_pred=False):
|
|
super().__init__()
|
|
self.global_pred = global_pred
|
|
self.model = nn.Sequential(
|
|
ResidualUnit(indim, dilation=1),
|
|
ResidualUnit(indim, dilation=2),
|
|
ResidualUnit(indim, dilation=3),
|
|
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
|
|
Rearrange("b c t -> b t c"),
|
|
)
|
|
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.model(x)
|
|
if self.global_pred:
|
|
x = torch.mean(x, dim=1, keepdim=False)
|
|
outs = [head(x) for head in self.heads]
|
|
return outs
|
|
|
|
def sequence_mask(length, max_length=None):
|
|
if max_length is None:
|
|
max_length = length.max()
|
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
|
return x.unsqueeze(0) < length.unsqueeze(1)
|
|
class FAquantizer(nn.Module):
|
|
def __init__(self, in_dim=1024,
|
|
n_p_codebooks=1,
|
|
n_c_codebooks=2,
|
|
n_t_codebooks=2,
|
|
n_r_codebooks=3,
|
|
codebook_size=1024,
|
|
codebook_dim=8,
|
|
quantizer_dropout=0.5,
|
|
causal=False,
|
|
separate_prosody_encoder=False,
|
|
timbre_norm=False,):
|
|
super(FAquantizer, self).__init__()
|
|
conv1d_type = SConv1d
|
|
self.prosody_quantizer = ResidualVectorQuantize(
|
|
input_dim=in_dim,
|
|
n_codebooks=n_p_codebooks,
|
|
codebook_size=codebook_size,
|
|
codebook_dim=codebook_dim,
|
|
quantizer_dropout=quantizer_dropout,
|
|
)
|
|
|
|
self.content_quantizer = ResidualVectorQuantize(
|
|
input_dim=in_dim,
|
|
n_codebooks=n_c_codebooks,
|
|
codebook_size=codebook_size,
|
|
codebook_dim=codebook_dim,
|
|
quantizer_dropout=quantizer_dropout,
|
|
)
|
|
|
|
self.residual_quantizer = ResidualVectorQuantize(
|
|
input_dim=in_dim,
|
|
n_codebooks=n_r_codebooks,
|
|
codebook_size=codebook_size,
|
|
codebook_dim=codebook_dim,
|
|
quantizer_dropout=quantizer_dropout,
|
|
)
|
|
|
|
self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal)
|
|
self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal)
|
|
self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal)
|
|
|
|
self.prob_random_mask_residual = 0.75
|
|
|
|
SPECT_PARAMS = {
|
|
"n_fft": 2048,
|
|
"win_length": 1200,
|
|
"hop_length": 300,
|
|
}
|
|
MEL_PARAMS = {
|
|
"n_mels": 80,
|
|
}
|
|
|
|
self.to_mel = torchaudio.transforms.MelSpectrogram(
|
|
n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS
|
|
)
|
|
self.mel_mean, self.mel_std = -4, 4
|
|
self.frame_rate = 24000 / 300
|
|
self.hop_length = 300
|
|
|
|
def preprocess(self, wave_tensor, n_bins=20):
|
|
mel_tensor = self.to_mel(wave_tensor.squeeze(1))
|
|
mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std
|
|
return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)]
|
|
|
|
def forward(self, x, wave_segments):
|
|
outs = 0
|
|
prosody_feature = self.preprocess(wave_segments)
|
|
|
|
f0_input = prosody_feature
|
|
f0_input = self.melspec_linear(f0_input)
|
|
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
|
|
f0_input.device).bool())
|
|
f0_input = self.melspec_linear2(f0_input)
|
|
|
|
common_min_size = min(f0_input.size(2), x.size(2))
|
|
f0_input = f0_input[:, :, :common_min_size]
|
|
|
|
x = x[:, :, :common_min_size]
|
|
|
|
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
|
|
f0_input, 1
|
|
)
|
|
outs += z_p.detach()
|
|
|
|
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
|
|
x, 2
|
|
)
|
|
outs += z_c.detach()
|
|
|
|
residual_feature = x - z_p.detach() - z_c.detach()
|
|
|
|
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
|
|
residual_feature, 3
|
|
)
|
|
|
|
quantized = [z_p, z_c, z_r]
|
|
codes = [codes_p, codes_c, codes_r]
|
|
|
|
return quantized, codes |