Update modules/audio.py
Browse files- modules/audio.py +82 -82
modules/audio.py
CHANGED
@@ -1,82 +1,82 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.utils.data
|
4 |
-
from librosa.filters import mel as librosa_mel_fn
|
5 |
-
from scipy.io.wavfile import read
|
6 |
-
|
7 |
-
MAX_WAV_VALUE = 32768.0
|
8 |
-
|
9 |
-
|
10 |
-
def load_wav(full_path):
|
11 |
-
sampling_rate, data = read(full_path)
|
12 |
-
return data, sampling_rate
|
13 |
-
|
14 |
-
|
15 |
-
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
16 |
-
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
17 |
-
|
18 |
-
|
19 |
-
def dynamic_range_decompression(x, C=1):
|
20 |
-
return np.exp(x) / C
|
21 |
-
|
22 |
-
|
23 |
-
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
24 |
-
return torch.log(torch.clamp(x, min=clip_val) * C)
|
25 |
-
|
26 |
-
|
27 |
-
def dynamic_range_decompression_torch(x, C=1):
|
28 |
-
return torch.exp(x) / C
|
29 |
-
|
30 |
-
|
31 |
-
def spectral_normalize_torch(magnitudes):
|
32 |
-
output = dynamic_range_compression_torch(magnitudes)
|
33 |
-
return output
|
34 |
-
|
35 |
-
|
36 |
-
def spectral_de_normalize_torch(magnitudes):
|
37 |
-
output = dynamic_range_decompression_torch(magnitudes)
|
38 |
-
return output
|
39 |
-
|
40 |
-
|
41 |
-
mel_basis = {}
|
42 |
-
hann_window = {}
|
43 |
-
|
44 |
-
|
45 |
-
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
46 |
-
if torch.min(y) < -1.0:
|
47 |
-
print("min value is ", torch.min(y))
|
48 |
-
if torch.max(y) > 1.0:
|
49 |
-
print("max value is ", torch.max(y))
|
50 |
-
|
51 |
-
global mel_basis, hann_window # pylint: disable=global-statement
|
52 |
-
if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
|
53 |
-
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
54 |
-
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
55 |
-
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
56 |
-
|
57 |
-
y = torch.nn.functional.pad(
|
58 |
-
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
59 |
-
)
|
60 |
-
y = y.squeeze(1)
|
61 |
-
|
62 |
-
spec = torch.view_as_real(
|
63 |
-
torch.stft(
|
64 |
-
y,
|
65 |
-
n_fft,
|
66 |
-
hop_length=hop_size,
|
67 |
-
win_length=win_size,
|
68 |
-
window=hann_window[str(y.device)],
|
69 |
-
center=center,
|
70 |
-
pad_mode="reflect",
|
71 |
-
normalized=False,
|
72 |
-
onesided=True,
|
73 |
-
return_complex=True,
|
74 |
-
)
|
75 |
-
)
|
76 |
-
|
77 |
-
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
78 |
-
|
79 |
-
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
|
80 |
-
spec = spectral_normalize_torch(spec)
|
81 |
-
|
82 |
-
return spec
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.utils.data
|
4 |
+
from librosa.filters import mel as librosa_mel_fn
|
5 |
+
from scipy.io.wavfile import read
|
6 |
+
|
7 |
+
MAX_WAV_VALUE = 32768.0
|
8 |
+
|
9 |
+
|
10 |
+
def load_wav(full_path):
|
11 |
+
sampling_rate, data = read(full_path)
|
12 |
+
return data, sampling_rate
|
13 |
+
|
14 |
+
|
15 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
16 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_decompression(x, C=1):
|
20 |
+
return np.exp(x) / C
|
21 |
+
|
22 |
+
|
23 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
24 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
25 |
+
|
26 |
+
|
27 |
+
def dynamic_range_decompression_torch(x, C=1):
|
28 |
+
return torch.exp(x) / C
|
29 |
+
|
30 |
+
|
31 |
+
def spectral_normalize_torch(magnitudes):
|
32 |
+
output = dynamic_range_compression_torch(magnitudes)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
def spectral_de_normalize_torch(magnitudes):
|
37 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
38 |
+
return output
|
39 |
+
|
40 |
+
|
41 |
+
mel_basis = {}
|
42 |
+
hann_window = {}
|
43 |
+
|
44 |
+
|
45 |
+
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
46 |
+
if torch.min(y) < -1.0:
|
47 |
+
print("min value is ", torch.min(y))
|
48 |
+
if torch.max(y) > 1.0:
|
49 |
+
print("max value is ", torch.max(y))
|
50 |
+
|
51 |
+
global mel_basis, hann_window # pylint: disable=global-statement
|
52 |
+
if f"{str(sampling_rate)}_{str(fmax)}_{str(y.device)}" not in mel_basis:
|
53 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
54 |
+
mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
55 |
+
hann_window[str(sampling_rate) + "_" + str(y.device)] = torch.hann_window(win_size).to(y.device)
|
56 |
+
|
57 |
+
y = torch.nn.functional.pad(
|
58 |
+
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
59 |
+
)
|
60 |
+
y = y.squeeze(1)
|
61 |
+
|
62 |
+
spec = torch.view_as_real(
|
63 |
+
torch.stft(
|
64 |
+
y,
|
65 |
+
n_fft,
|
66 |
+
hop_length=hop_size,
|
67 |
+
win_length=win_size,
|
68 |
+
window=hann_window[str(sampling_rate) + "_" + str(y.device)],
|
69 |
+
center=center,
|
70 |
+
pad_mode="reflect",
|
71 |
+
normalized=False,
|
72 |
+
onesided=True,
|
73 |
+
return_complex=True,
|
74 |
+
)
|
75 |
+
)
|
76 |
+
|
77 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
78 |
+
|
79 |
+
spec = torch.matmul(mel_basis[str(sampling_rate) + "_" + str(fmax) + "_" + str(y.device)], spec)
|
80 |
+
spec = spectral_normalize_torch(spec)
|
81 |
+
|
82 |
+
return spec
|