Update modules/commons.py
Browse files- modules/commons.py +490 -490
modules/commons.py
CHANGED
@@ -1,490 +1,490 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from munch import Munch
|
7 |
-
import json
|
8 |
-
|
9 |
-
|
10 |
-
class AttrDict(dict):
|
11 |
-
def __init__(self, *args, **kwargs):
|
12 |
-
super(AttrDict, self).__init__(*args, **kwargs)
|
13 |
-
self.__dict__ = self
|
14 |
-
|
15 |
-
|
16 |
-
def init_weights(m, mean=0.0, std=0.01):
|
17 |
-
classname = m.__class__.__name__
|
18 |
-
if classname.find("Conv") != -1:
|
19 |
-
m.weight.data.normal_(mean, std)
|
20 |
-
|
21 |
-
|
22 |
-
def get_padding(kernel_size, dilation=1):
|
23 |
-
return int((kernel_size * dilation - dilation) / 2)
|
24 |
-
|
25 |
-
|
26 |
-
def convert_pad_shape(pad_shape):
|
27 |
-
l = pad_shape[::-1]
|
28 |
-
pad_shape = [item for sublist in l for item in sublist]
|
29 |
-
return pad_shape
|
30 |
-
|
31 |
-
|
32 |
-
def intersperse(lst, item):
|
33 |
-
result = [item] * (len(lst) * 2 + 1)
|
34 |
-
result[1::2] = lst
|
35 |
-
return result
|
36 |
-
|
37 |
-
|
38 |
-
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
39 |
-
"""KL(P||Q)"""
|
40 |
-
kl = (logs_q - logs_p) - 0.5
|
41 |
-
kl += (
|
42 |
-
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
43 |
-
)
|
44 |
-
return kl
|
45 |
-
|
46 |
-
|
47 |
-
def rand_gumbel(shape):
|
48 |
-
"""Sample from the Gumbel distribution, protect from overflows."""
|
49 |
-
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
50 |
-
return -torch.log(-torch.log(uniform_samples))
|
51 |
-
|
52 |
-
|
53 |
-
def rand_gumbel_like(x):
|
54 |
-
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
55 |
-
return g
|
56 |
-
|
57 |
-
|
58 |
-
def slice_segments(x, ids_str, segment_size=4):
|
59 |
-
ret = torch.zeros_like(x[:, :, :segment_size])
|
60 |
-
for i in range(x.size(0)):
|
61 |
-
idx_str = ids_str[i]
|
62 |
-
idx_end = idx_str + segment_size
|
63 |
-
ret[i] = x[i, :, idx_str:idx_end]
|
64 |
-
return ret
|
65 |
-
|
66 |
-
|
67 |
-
def slice_segments_audio(x, ids_str, segment_size=4):
|
68 |
-
ret = torch.zeros_like(x[:, :segment_size])
|
69 |
-
for i in range(x.size(0)):
|
70 |
-
idx_str = ids_str[i]
|
71 |
-
idx_end = idx_str + segment_size
|
72 |
-
ret[i] = x[i, idx_str:idx_end]
|
73 |
-
return ret
|
74 |
-
|
75 |
-
|
76 |
-
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
77 |
-
b, d, t = x.size()
|
78 |
-
if x_lengths is None:
|
79 |
-
x_lengths = t
|
80 |
-
ids_str_max = x_lengths - segment_size + 1
|
81 |
-
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
|
82 |
-
dtype=torch.long
|
83 |
-
)
|
84 |
-
ret = slice_segments(x, ids_str, segment_size)
|
85 |
-
return ret, ids_str
|
86 |
-
|
87 |
-
|
88 |
-
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
89 |
-
position = torch.arange(length, dtype=torch.float)
|
90 |
-
num_timescales = channels // 2
|
91 |
-
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
92 |
-
num_timescales - 1
|
93 |
-
)
|
94 |
-
inv_timescales = min_timescale * torch.exp(
|
95 |
-
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
96 |
-
)
|
97 |
-
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
98 |
-
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
99 |
-
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
100 |
-
signal = signal.view(1, channels, length)
|
101 |
-
return signal
|
102 |
-
|
103 |
-
|
104 |
-
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
105 |
-
b, channels, length = x.size()
|
106 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
107 |
-
return x + signal.to(dtype=x.dtype, device=x.device)
|
108 |
-
|
109 |
-
|
110 |
-
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
111 |
-
b, channels, length = x.size()
|
112 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
113 |
-
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
114 |
-
|
115 |
-
|
116 |
-
def subsequent_mask(length):
|
117 |
-
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
118 |
-
return mask
|
119 |
-
|
120 |
-
|
121 |
-
@torch.jit.script
|
122 |
-
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
123 |
-
n_channels_int = n_channels[0]
|
124 |
-
in_act = input_a + input_b
|
125 |
-
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
126 |
-
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
127 |
-
acts = t_act * s_act
|
128 |
-
return acts
|
129 |
-
|
130 |
-
|
131 |
-
def convert_pad_shape(pad_shape):
|
132 |
-
l = pad_shape[::-1]
|
133 |
-
pad_shape = [item for sublist in l for item in sublist]
|
134 |
-
return pad_shape
|
135 |
-
|
136 |
-
|
137 |
-
def shift_1d(x):
|
138 |
-
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
139 |
-
return x
|
140 |
-
|
141 |
-
|
142 |
-
def sequence_mask(length, max_length=None):
|
143 |
-
if max_length is None:
|
144 |
-
max_length = length.max()
|
145 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
146 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
147 |
-
|
148 |
-
|
149 |
-
def avg_with_mask(x, mask):
|
150 |
-
assert mask.dtype == torch.float, "Mask should be float"
|
151 |
-
|
152 |
-
if mask.ndim == 2:
|
153 |
-
mask = mask.unsqueeze(1)
|
154 |
-
|
155 |
-
if mask.shape[1] == 1:
|
156 |
-
mask = mask.expand_as(x)
|
157 |
-
|
158 |
-
return (x * mask).sum() / mask.sum()
|
159 |
-
|
160 |
-
|
161 |
-
def generate_path(duration, mask):
|
162 |
-
"""
|
163 |
-
duration: [b, 1, t_x]
|
164 |
-
mask: [b, 1, t_y, t_x]
|
165 |
-
"""
|
166 |
-
device = duration.device
|
167 |
-
|
168 |
-
b, _, t_y, t_x = mask.shape
|
169 |
-
cum_duration = torch.cumsum(duration, -1)
|
170 |
-
|
171 |
-
cum_duration_flat = cum_duration.view(b * t_x)
|
172 |
-
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
173 |
-
path = path.view(b, t_x, t_y)
|
174 |
-
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
175 |
-
path = path.unsqueeze(1).transpose(2, 3) * mask
|
176 |
-
return path
|
177 |
-
|
178 |
-
|
179 |
-
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
180 |
-
if isinstance(parameters, torch.Tensor):
|
181 |
-
parameters = [parameters]
|
182 |
-
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
183 |
-
norm_type = float(norm_type)
|
184 |
-
if clip_value is not None:
|
185 |
-
clip_value = float(clip_value)
|
186 |
-
|
187 |
-
total_norm = 0
|
188 |
-
for p in parameters:
|
189 |
-
param_norm = p.grad.data.norm(norm_type)
|
190 |
-
total_norm += param_norm.item() ** norm_type
|
191 |
-
if clip_value is not None:
|
192 |
-
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
193 |
-
total_norm = total_norm ** (1.0 / norm_type)
|
194 |
-
return total_norm
|
195 |
-
|
196 |
-
|
197 |
-
def log_norm(x, mean=-4, std=4, dim=2):
|
198 |
-
"""
|
199 |
-
normalized log mel -> mel -> norm -> log(norm)
|
200 |
-
"""
|
201 |
-
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
202 |
-
return x
|
203 |
-
|
204 |
-
|
205 |
-
def load_F0_models(path):
|
206 |
-
# load F0 model
|
207 |
-
from .JDC.model import JDCNet
|
208 |
-
|
209 |
-
F0_model = JDCNet(num_class=1, seq_len=192)
|
210 |
-
params = torch.load(path, map_location="cpu")["net"]
|
211 |
-
F0_model.load_state_dict(params)
|
212 |
-
_ = F0_model.train()
|
213 |
-
|
214 |
-
return F0_model
|
215 |
-
|
216 |
-
|
217 |
-
def modify_w2v_forward(self, output_layer=15):
|
218 |
-
"""
|
219 |
-
change forward method of w2v encoder to get its intermediate layer output
|
220 |
-
:param self:
|
221 |
-
:param layer:
|
222 |
-
:return:
|
223 |
-
"""
|
224 |
-
from transformers.modeling_outputs import BaseModelOutput
|
225 |
-
|
226 |
-
def forward(
|
227 |
-
hidden_states,
|
228 |
-
attention_mask=None,
|
229 |
-
output_attentions=False,
|
230 |
-
output_hidden_states=False,
|
231 |
-
return_dict=True,
|
232 |
-
):
|
233 |
-
all_hidden_states = () if output_hidden_states else None
|
234 |
-
all_self_attentions = () if output_attentions else None
|
235 |
-
|
236 |
-
conv_attention_mask = attention_mask
|
237 |
-
if attention_mask is not None:
|
238 |
-
# make sure padded tokens output 0
|
239 |
-
hidden_states = hidden_states.masked_fill(
|
240 |
-
~attention_mask.bool().unsqueeze(-1), 0.0
|
241 |
-
)
|
242 |
-
|
243 |
-
# extend attention_mask
|
244 |
-
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
|
245 |
-
dtype=hidden_states.dtype
|
246 |
-
)
|
247 |
-
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
248 |
-
attention_mask = attention_mask.expand(
|
249 |
-
attention_mask.shape[0],
|
250 |
-
1,
|
251 |
-
attention_mask.shape[-1],
|
252 |
-
attention_mask.shape[-1],
|
253 |
-
)
|
254 |
-
|
255 |
-
hidden_states = self.dropout(hidden_states)
|
256 |
-
|
257 |
-
if self.embed_positions is not None:
|
258 |
-
relative_position_embeddings = self.embed_positions(hidden_states)
|
259 |
-
else:
|
260 |
-
relative_position_embeddings = None
|
261 |
-
|
262 |
-
deepspeed_zero3_is_enabled = False
|
263 |
-
|
264 |
-
for i, layer in enumerate(self.layers):
|
265 |
-
if output_hidden_states:
|
266 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
267 |
-
|
268 |
-
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
269 |
-
dropout_probability = torch.rand([])
|
270 |
-
|
271 |
-
skip_the_layer = (
|
272 |
-
True
|
273 |
-
if self.training and (dropout_probability < self.config.layerdrop)
|
274 |
-
else False
|
275 |
-
)
|
276 |
-
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
277 |
-
# under deepspeed zero3 all gpus must run in sync
|
278 |
-
if self.gradient_checkpointing and self.training:
|
279 |
-
layer_outputs = self._gradient_checkpointing_func(
|
280 |
-
layer.__call__,
|
281 |
-
hidden_states,
|
282 |
-
attention_mask,
|
283 |
-
relative_position_embeddings,
|
284 |
-
output_attentions,
|
285 |
-
conv_attention_mask,
|
286 |
-
)
|
287 |
-
else:
|
288 |
-
layer_outputs = layer(
|
289 |
-
hidden_states,
|
290 |
-
attention_mask=attention_mask,
|
291 |
-
relative_position_embeddings=relative_position_embeddings,
|
292 |
-
output_attentions=output_attentions,
|
293 |
-
conv_attention_mask=conv_attention_mask,
|
294 |
-
)
|
295 |
-
hidden_states = layer_outputs[0]
|
296 |
-
|
297 |
-
if skip_the_layer:
|
298 |
-
layer_outputs = (None, None)
|
299 |
-
|
300 |
-
if output_attentions:
|
301 |
-
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
302 |
-
|
303 |
-
if i == output_layer - 1:
|
304 |
-
break
|
305 |
-
|
306 |
-
if output_hidden_states:
|
307 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
308 |
-
|
309 |
-
if not return_dict:
|
310 |
-
return tuple(
|
311 |
-
v
|
312 |
-
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
313 |
-
if v is not None
|
314 |
-
)
|
315 |
-
return BaseModelOutput(
|
316 |
-
last_hidden_state=hidden_states,
|
317 |
-
hidden_states=all_hidden_states,
|
318 |
-
attentions=all_self_attentions,
|
319 |
-
)
|
320 |
-
|
321 |
-
return forward
|
322 |
-
|
323 |
-
|
324 |
-
MATPLOTLIB_FLAG = False
|
325 |
-
|
326 |
-
|
327 |
-
def plot_spectrogram_to_numpy(spectrogram):
|
328 |
-
global MATPLOTLIB_FLAG
|
329 |
-
if not MATPLOTLIB_FLAG:
|
330 |
-
import matplotlib
|
331 |
-
import logging
|
332 |
-
|
333 |
-
matplotlib.use("Agg")
|
334 |
-
MATPLOTLIB_FLAG = True
|
335 |
-
mpl_logger = logging.getLogger("matplotlib")
|
336 |
-
mpl_logger.setLevel(logging.WARNING)
|
337 |
-
import matplotlib.pylab as plt
|
338 |
-
import numpy as np
|
339 |
-
|
340 |
-
fig, ax = plt.subplots(figsize=(10, 2))
|
341 |
-
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
342 |
-
plt.colorbar(im, ax=ax)
|
343 |
-
plt.xlabel("Frames")
|
344 |
-
plt.ylabel("Channels")
|
345 |
-
plt.tight_layout()
|
346 |
-
|
347 |
-
fig.canvas.draw()
|
348 |
-
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
349 |
-
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
350 |
-
plt.close()
|
351 |
-
return data
|
352 |
-
|
353 |
-
|
354 |
-
def normalize_f0(f0_sequence):
|
355 |
-
# Remove unvoiced frames (replace with -1)
|
356 |
-
voiced_indices = np.where(f0_sequence > 0)[0]
|
357 |
-
f0_voiced = f0_sequence[voiced_indices]
|
358 |
-
|
359 |
-
# Convert to log scale
|
360 |
-
log_f0 = np.log2(f0_voiced)
|
361 |
-
|
362 |
-
# Calculate mean and standard deviation
|
363 |
-
mean_f0 = np.mean(log_f0)
|
364 |
-
std_f0 = np.std(log_f0)
|
365 |
-
|
366 |
-
# Normalize the F0 sequence
|
367 |
-
normalized_f0 = (log_f0 - mean_f0) / std_f0
|
368 |
-
|
369 |
-
# Create the normalized F0 sequence with unvoiced frames
|
370 |
-
normalized_sequence = np.zeros_like(f0_sequence)
|
371 |
-
normalized_sequence[voiced_indices] = normalized_f0
|
372 |
-
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames
|
373 |
-
|
374 |
-
return normalized_sequence
|
375 |
-
|
376 |
-
|
377 |
-
def build_model(args, stage="DiT"):
|
378 |
-
if stage == "DiT":
|
379 |
-
from modules.flow_matching import CFM
|
380 |
-
from modules.length_regulator import InterpolateRegulator
|
381 |
-
|
382 |
-
length_regulator = InterpolateRegulator(
|
383 |
-
channels=args.length_regulator.channels,
|
384 |
-
sampling_ratios=args.length_regulator.sampling_ratios,
|
385 |
-
is_discrete=args.length_regulator.is_discrete,
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
|
390 |
-
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
|
391 |
-
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
|
392 |
-
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
|
393 |
-
)
|
394 |
-
cfm = CFM(args)
|
395 |
-
nets = Munch(
|
396 |
-
cfm=cfm,
|
397 |
-
length_regulator=length_regulator,
|
398 |
-
)
|
399 |
-
elif stage == 'codec':
|
400 |
-
from dac.model.dac import Encoder
|
401 |
-
from modules.quantize import (
|
402 |
-
FAquantizer,
|
403 |
-
)
|
404 |
-
|
405 |
-
encoder = Encoder(
|
406 |
-
d_model=args.DAC.encoder_dim,
|
407 |
-
strides=args.DAC.encoder_rates,
|
408 |
-
d_latent=1024,
|
409 |
-
causal=args.causal,
|
410 |
-
lstm=args.lstm,
|
411 |
-
)
|
412 |
-
|
413 |
-
quantizer = FAquantizer(
|
414 |
-
in_dim=1024,
|
415 |
-
n_p_codebooks=1,
|
416 |
-
n_c_codebooks=args.n_c_codebooks,
|
417 |
-
n_t_codebooks=2,
|
418 |
-
n_r_codebooks=3,
|
419 |
-
codebook_size=1024,
|
420 |
-
codebook_dim=8,
|
421 |
-
quantizer_dropout=0.5,
|
422 |
-
causal=args.causal,
|
423 |
-
separate_prosody_encoder=args.separate_prosody_encoder,
|
424 |
-
timbre_norm=args.timbre_norm,
|
425 |
-
)
|
426 |
-
|
427 |
-
nets = Munch(
|
428 |
-
encoder=encoder,
|
429 |
-
quantizer=quantizer,
|
430 |
-
)
|
431 |
-
else:
|
432 |
-
raise ValueError(f"Unknown stage: {stage}")
|
433 |
-
|
434 |
-
return nets
|
435 |
-
|
436 |
-
|
437 |
-
def load_checkpoint(
|
438 |
-
model,
|
439 |
-
optimizer,
|
440 |
-
path,
|
441 |
-
load_only_params=True,
|
442 |
-
ignore_modules=[],
|
443 |
-
is_distributed=False,
|
444 |
-
):
|
445 |
-
state = torch.load(path, map_location="cpu")
|
446 |
-
params = state["net"]
|
447 |
-
for key in model:
|
448 |
-
if key in params and key not in ignore_modules:
|
449 |
-
if not is_distributed:
|
450 |
-
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
451 |
-
for k in list(params[key].keys()):
|
452 |
-
if k.startswith("module."):
|
453 |
-
params[key][k[len("module.") :]] = params[key][k]
|
454 |
-
del params[key][k]
|
455 |
-
model_state_dict = model[key].state_dict()
|
456 |
-
# 过滤出形状匹配的键值对
|
457 |
-
filtered_state_dict = {
|
458 |
-
k: v
|
459 |
-
for k, v in params[key].items()
|
460 |
-
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
461 |
-
}
|
462 |
-
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
463 |
-
if skipped_keys:
|
464 |
-
print(
|
465 |
-
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
466 |
-
)
|
467 |
-
print("%s loaded" % key)
|
468 |
-
model[key].load_state_dict(filtered_state_dict, strict=False)
|
469 |
-
_ = [model[key].eval() for key in model]
|
470 |
-
|
471 |
-
if not load_only_params:
|
472 |
-
epoch = state["epoch"] + 1
|
473 |
-
iters = state["iters"]
|
474 |
-
optimizer.load_state_dict(state["optimizer"])
|
475 |
-
optimizer.load_scheduler_state_dict(state["scheduler"])
|
476 |
-
|
477 |
-
else:
|
478 |
-
epoch = 0
|
479 |
-
iters = 0
|
480 |
-
|
481 |
-
return model, optimizer, epoch, iters
|
482 |
-
|
483 |
-
|
484 |
-
def recursive_munch(d):
|
485 |
-
if isinstance(d, dict):
|
486 |
-
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
487 |
-
elif isinstance(d, list):
|
488 |
-
return [recursive_munch(v) for v in d]
|
489 |
-
else:
|
490 |
-
return d
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from munch import Munch
|
7 |
+
import json
|
8 |
+
|
9 |
+
|
10 |
+
class AttrDict(dict):
|
11 |
+
def __init__(self, *args, **kwargs):
|
12 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
13 |
+
self.__dict__ = self
|
14 |
+
|
15 |
+
|
16 |
+
def init_weights(m, mean=0.0, std=0.01):
|
17 |
+
classname = m.__class__.__name__
|
18 |
+
if classname.find("Conv") != -1:
|
19 |
+
m.weight.data.normal_(mean, std)
|
20 |
+
|
21 |
+
|
22 |
+
def get_padding(kernel_size, dilation=1):
|
23 |
+
return int((kernel_size * dilation - dilation) / 2)
|
24 |
+
|
25 |
+
|
26 |
+
def convert_pad_shape(pad_shape):
|
27 |
+
l = pad_shape[::-1]
|
28 |
+
pad_shape = [item for sublist in l for item in sublist]
|
29 |
+
return pad_shape
|
30 |
+
|
31 |
+
|
32 |
+
def intersperse(lst, item):
|
33 |
+
result = [item] * (len(lst) * 2 + 1)
|
34 |
+
result[1::2] = lst
|
35 |
+
return result
|
36 |
+
|
37 |
+
|
38 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
39 |
+
"""KL(P||Q)"""
|
40 |
+
kl = (logs_q - logs_p) - 0.5
|
41 |
+
kl += (
|
42 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
43 |
+
)
|
44 |
+
return kl
|
45 |
+
|
46 |
+
|
47 |
+
def rand_gumbel(shape):
|
48 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
49 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
50 |
+
return -torch.log(-torch.log(uniform_samples))
|
51 |
+
|
52 |
+
|
53 |
+
def rand_gumbel_like(x):
|
54 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
55 |
+
return g
|
56 |
+
|
57 |
+
|
58 |
+
def slice_segments(x, ids_str, segment_size=4):
|
59 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
60 |
+
for i in range(x.size(0)):
|
61 |
+
idx_str = ids_str[i]
|
62 |
+
idx_end = idx_str + segment_size
|
63 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
64 |
+
return ret
|
65 |
+
|
66 |
+
|
67 |
+
def slice_segments_audio(x, ids_str, segment_size=4):
|
68 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
69 |
+
for i in range(x.size(0)):
|
70 |
+
idx_str = ids_str[i]
|
71 |
+
idx_end = idx_str + segment_size
|
72 |
+
ret[i] = x[i, idx_str:idx_end]
|
73 |
+
return ret
|
74 |
+
|
75 |
+
|
76 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
77 |
+
b, d, t = x.size()
|
78 |
+
if x_lengths is None:
|
79 |
+
x_lengths = t
|
80 |
+
ids_str_max = x_lengths - segment_size + 1
|
81 |
+
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
|
82 |
+
dtype=torch.long
|
83 |
+
)
|
84 |
+
ret = slice_segments(x, ids_str, segment_size)
|
85 |
+
return ret, ids_str
|
86 |
+
|
87 |
+
|
88 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
89 |
+
position = torch.arange(length, dtype=torch.float)
|
90 |
+
num_timescales = channels // 2
|
91 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
92 |
+
num_timescales - 1
|
93 |
+
)
|
94 |
+
inv_timescales = min_timescale * torch.exp(
|
95 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
96 |
+
)
|
97 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
98 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
99 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
100 |
+
signal = signal.view(1, channels, length)
|
101 |
+
return signal
|
102 |
+
|
103 |
+
|
104 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
105 |
+
b, channels, length = x.size()
|
106 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
107 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
108 |
+
|
109 |
+
|
110 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
111 |
+
b, channels, length = x.size()
|
112 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
113 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
114 |
+
|
115 |
+
|
116 |
+
def subsequent_mask(length):
|
117 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
118 |
+
return mask
|
119 |
+
|
120 |
+
|
121 |
+
@torch.jit.script
|
122 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
123 |
+
n_channels_int = n_channels[0]
|
124 |
+
in_act = input_a + input_b
|
125 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
126 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
127 |
+
acts = t_act * s_act
|
128 |
+
return acts
|
129 |
+
|
130 |
+
|
131 |
+
def convert_pad_shape(pad_shape):
|
132 |
+
l = pad_shape[::-1]
|
133 |
+
pad_shape = [item for sublist in l for item in sublist]
|
134 |
+
return pad_shape
|
135 |
+
|
136 |
+
|
137 |
+
def shift_1d(x):
|
138 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
def sequence_mask(length, max_length=None):
|
143 |
+
if max_length is None:
|
144 |
+
max_length = length.max()
|
145 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
146 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
147 |
+
|
148 |
+
|
149 |
+
def avg_with_mask(x, mask):
|
150 |
+
assert mask.dtype == torch.float, "Mask should be float"
|
151 |
+
|
152 |
+
if mask.ndim == 2:
|
153 |
+
mask = mask.unsqueeze(1)
|
154 |
+
|
155 |
+
if mask.shape[1] == 1:
|
156 |
+
mask = mask.expand_as(x)
|
157 |
+
|
158 |
+
return (x * mask).sum() / mask.sum()
|
159 |
+
|
160 |
+
|
161 |
+
def generate_path(duration, mask):
|
162 |
+
"""
|
163 |
+
duration: [b, 1, t_x]
|
164 |
+
mask: [b, 1, t_y, t_x]
|
165 |
+
"""
|
166 |
+
device = duration.device
|
167 |
+
|
168 |
+
b, _, t_y, t_x = mask.shape
|
169 |
+
cum_duration = torch.cumsum(duration, -1)
|
170 |
+
|
171 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
172 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
173 |
+
path = path.view(b, t_x, t_y)
|
174 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
175 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
176 |
+
return path
|
177 |
+
|
178 |
+
|
179 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
180 |
+
if isinstance(parameters, torch.Tensor):
|
181 |
+
parameters = [parameters]
|
182 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
183 |
+
norm_type = float(norm_type)
|
184 |
+
if clip_value is not None:
|
185 |
+
clip_value = float(clip_value)
|
186 |
+
|
187 |
+
total_norm = 0
|
188 |
+
for p in parameters:
|
189 |
+
param_norm = p.grad.data.norm(norm_type)
|
190 |
+
total_norm += param_norm.item() ** norm_type
|
191 |
+
if clip_value is not None:
|
192 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
193 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
194 |
+
return total_norm
|
195 |
+
|
196 |
+
|
197 |
+
def log_norm(x, mean=-4, std=4, dim=2):
|
198 |
+
"""
|
199 |
+
normalized log mel -> mel -> norm -> log(norm)
|
200 |
+
"""
|
201 |
+
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
202 |
+
return x
|
203 |
+
|
204 |
+
|
205 |
+
def load_F0_models(path):
|
206 |
+
# load F0 model
|
207 |
+
from .JDC.model import JDCNet
|
208 |
+
|
209 |
+
F0_model = JDCNet(num_class=1, seq_len=192)
|
210 |
+
params = torch.load(path, map_location="cpu")["net"]
|
211 |
+
F0_model.load_state_dict(params)
|
212 |
+
_ = F0_model.train()
|
213 |
+
|
214 |
+
return F0_model
|
215 |
+
|
216 |
+
|
217 |
+
def modify_w2v_forward(self, output_layer=15):
|
218 |
+
"""
|
219 |
+
change forward method of w2v encoder to get its intermediate layer output
|
220 |
+
:param self:
|
221 |
+
:param layer:
|
222 |
+
:return:
|
223 |
+
"""
|
224 |
+
from transformers.modeling_outputs import BaseModelOutput
|
225 |
+
|
226 |
+
def forward(
|
227 |
+
hidden_states,
|
228 |
+
attention_mask=None,
|
229 |
+
output_attentions=False,
|
230 |
+
output_hidden_states=False,
|
231 |
+
return_dict=True,
|
232 |
+
):
|
233 |
+
all_hidden_states = () if output_hidden_states else None
|
234 |
+
all_self_attentions = () if output_attentions else None
|
235 |
+
|
236 |
+
conv_attention_mask = attention_mask
|
237 |
+
if attention_mask is not None:
|
238 |
+
# make sure padded tokens output 0
|
239 |
+
hidden_states = hidden_states.masked_fill(
|
240 |
+
~attention_mask.bool().unsqueeze(-1), 0.0
|
241 |
+
)
|
242 |
+
|
243 |
+
# extend attention_mask
|
244 |
+
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
|
245 |
+
dtype=hidden_states.dtype
|
246 |
+
)
|
247 |
+
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
248 |
+
attention_mask = attention_mask.expand(
|
249 |
+
attention_mask.shape[0],
|
250 |
+
1,
|
251 |
+
attention_mask.shape[-1],
|
252 |
+
attention_mask.shape[-1],
|
253 |
+
)
|
254 |
+
|
255 |
+
hidden_states = self.dropout(hidden_states)
|
256 |
+
|
257 |
+
if self.embed_positions is not None:
|
258 |
+
relative_position_embeddings = self.embed_positions(hidden_states)
|
259 |
+
else:
|
260 |
+
relative_position_embeddings = None
|
261 |
+
|
262 |
+
deepspeed_zero3_is_enabled = False
|
263 |
+
|
264 |
+
for i, layer in enumerate(self.layers):
|
265 |
+
if output_hidden_states:
|
266 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
267 |
+
|
268 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
269 |
+
dropout_probability = torch.rand([])
|
270 |
+
|
271 |
+
skip_the_layer = (
|
272 |
+
True
|
273 |
+
if self.training and (dropout_probability < self.config.layerdrop)
|
274 |
+
else False
|
275 |
+
)
|
276 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
277 |
+
# under deepspeed zero3 all gpus must run in sync
|
278 |
+
if self.gradient_checkpointing and self.training:
|
279 |
+
layer_outputs = self._gradient_checkpointing_func(
|
280 |
+
layer.__call__,
|
281 |
+
hidden_states,
|
282 |
+
attention_mask,
|
283 |
+
relative_position_embeddings,
|
284 |
+
output_attentions,
|
285 |
+
conv_attention_mask,
|
286 |
+
)
|
287 |
+
else:
|
288 |
+
layer_outputs = layer(
|
289 |
+
hidden_states,
|
290 |
+
attention_mask=attention_mask,
|
291 |
+
relative_position_embeddings=relative_position_embeddings,
|
292 |
+
output_attentions=output_attentions,
|
293 |
+
conv_attention_mask=conv_attention_mask,
|
294 |
+
)
|
295 |
+
hidden_states = layer_outputs[0]
|
296 |
+
|
297 |
+
if skip_the_layer:
|
298 |
+
layer_outputs = (None, None)
|
299 |
+
|
300 |
+
if output_attentions:
|
301 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
302 |
+
|
303 |
+
if i == output_layer - 1:
|
304 |
+
break
|
305 |
+
|
306 |
+
if output_hidden_states:
|
307 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
308 |
+
|
309 |
+
if not return_dict:
|
310 |
+
return tuple(
|
311 |
+
v
|
312 |
+
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
313 |
+
if v is not None
|
314 |
+
)
|
315 |
+
return BaseModelOutput(
|
316 |
+
last_hidden_state=hidden_states,
|
317 |
+
hidden_states=all_hidden_states,
|
318 |
+
attentions=all_self_attentions,
|
319 |
+
)
|
320 |
+
|
321 |
+
return forward
|
322 |
+
|
323 |
+
|
324 |
+
MATPLOTLIB_FLAG = False
|
325 |
+
|
326 |
+
|
327 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
328 |
+
global MATPLOTLIB_FLAG
|
329 |
+
if not MATPLOTLIB_FLAG:
|
330 |
+
import matplotlib
|
331 |
+
import logging
|
332 |
+
|
333 |
+
matplotlib.use("Agg")
|
334 |
+
MATPLOTLIB_FLAG = True
|
335 |
+
mpl_logger = logging.getLogger("matplotlib")
|
336 |
+
mpl_logger.setLevel(logging.WARNING)
|
337 |
+
import matplotlib.pylab as plt
|
338 |
+
import numpy as np
|
339 |
+
|
340 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
341 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
342 |
+
plt.colorbar(im, ax=ax)
|
343 |
+
plt.xlabel("Frames")
|
344 |
+
plt.ylabel("Channels")
|
345 |
+
plt.tight_layout()
|
346 |
+
|
347 |
+
fig.canvas.draw()
|
348 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
349 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
350 |
+
plt.close()
|
351 |
+
return data
|
352 |
+
|
353 |
+
|
354 |
+
def normalize_f0(f0_sequence):
|
355 |
+
# Remove unvoiced frames (replace with -1)
|
356 |
+
voiced_indices = np.where(f0_sequence > 0)[0]
|
357 |
+
f0_voiced = f0_sequence[voiced_indices]
|
358 |
+
|
359 |
+
# Convert to log scale
|
360 |
+
log_f0 = np.log2(f0_voiced)
|
361 |
+
|
362 |
+
# Calculate mean and standard deviation
|
363 |
+
mean_f0 = np.mean(log_f0)
|
364 |
+
std_f0 = np.std(log_f0)
|
365 |
+
|
366 |
+
# Normalize the F0 sequence
|
367 |
+
normalized_f0 = (log_f0 - mean_f0) / std_f0
|
368 |
+
|
369 |
+
# Create the normalized F0 sequence with unvoiced frames
|
370 |
+
normalized_sequence = np.zeros_like(f0_sequence)
|
371 |
+
normalized_sequence[voiced_indices] = normalized_f0
|
372 |
+
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames
|
373 |
+
|
374 |
+
return normalized_sequence
|
375 |
+
|
376 |
+
|
377 |
+
def build_model(args, stage="DiT"):
|
378 |
+
if stage == "DiT":
|
379 |
+
from modules.flow_matching import CFM
|
380 |
+
from modules.length_regulator import InterpolateRegulator
|
381 |
+
|
382 |
+
length_regulator = InterpolateRegulator(
|
383 |
+
channels=args.length_regulator.channels,
|
384 |
+
sampling_ratios=args.length_regulator.sampling_ratios,
|
385 |
+
is_discrete=args.length_regulator.is_discrete,
|
386 |
+
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
|
387 |
+
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
|
388 |
+
codebook_size=args.length_regulator.content_codebook_size,
|
389 |
+
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
|
390 |
+
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
|
391 |
+
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
|
392 |
+
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
|
393 |
+
)
|
394 |
+
cfm = CFM(args)
|
395 |
+
nets = Munch(
|
396 |
+
cfm=cfm,
|
397 |
+
length_regulator=length_regulator,
|
398 |
+
)
|
399 |
+
elif stage == 'codec':
|
400 |
+
from dac.model.dac import Encoder
|
401 |
+
from modules.quantize import (
|
402 |
+
FAquantizer,
|
403 |
+
)
|
404 |
+
|
405 |
+
encoder = Encoder(
|
406 |
+
d_model=args.DAC.encoder_dim,
|
407 |
+
strides=args.DAC.encoder_rates,
|
408 |
+
d_latent=1024,
|
409 |
+
causal=args.causal,
|
410 |
+
lstm=args.lstm,
|
411 |
+
)
|
412 |
+
|
413 |
+
quantizer = FAquantizer(
|
414 |
+
in_dim=1024,
|
415 |
+
n_p_codebooks=1,
|
416 |
+
n_c_codebooks=args.n_c_codebooks,
|
417 |
+
n_t_codebooks=2,
|
418 |
+
n_r_codebooks=3,
|
419 |
+
codebook_size=1024,
|
420 |
+
codebook_dim=8,
|
421 |
+
quantizer_dropout=0.5,
|
422 |
+
causal=args.causal,
|
423 |
+
separate_prosody_encoder=args.separate_prosody_encoder,
|
424 |
+
timbre_norm=args.timbre_norm,
|
425 |
+
)
|
426 |
+
|
427 |
+
nets = Munch(
|
428 |
+
encoder=encoder,
|
429 |
+
quantizer=quantizer,
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
raise ValueError(f"Unknown stage: {stage}")
|
433 |
+
|
434 |
+
return nets
|
435 |
+
|
436 |
+
|
437 |
+
def load_checkpoint(
|
438 |
+
model,
|
439 |
+
optimizer,
|
440 |
+
path,
|
441 |
+
load_only_params=True,
|
442 |
+
ignore_modules=[],
|
443 |
+
is_distributed=False,
|
444 |
+
):
|
445 |
+
state = torch.load(path, map_location="cpu")
|
446 |
+
params = state["net"]
|
447 |
+
for key in model:
|
448 |
+
if key in params and key not in ignore_modules:
|
449 |
+
if not is_distributed:
|
450 |
+
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
451 |
+
for k in list(params[key].keys()):
|
452 |
+
if k.startswith("module."):
|
453 |
+
params[key][k[len("module.") :]] = params[key][k]
|
454 |
+
del params[key][k]
|
455 |
+
model_state_dict = model[key].state_dict()
|
456 |
+
# 过滤出形状匹配的键值对
|
457 |
+
filtered_state_dict = {
|
458 |
+
k: v
|
459 |
+
for k, v in params[key].items()
|
460 |
+
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
461 |
+
}
|
462 |
+
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
463 |
+
if skipped_keys:
|
464 |
+
print(
|
465 |
+
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
466 |
+
)
|
467 |
+
print("%s loaded" % key)
|
468 |
+
model[key].load_state_dict(filtered_state_dict, strict=False)
|
469 |
+
_ = [model[key].eval() for key in model]
|
470 |
+
|
471 |
+
if not load_only_params:
|
472 |
+
epoch = state["epoch"] + 1
|
473 |
+
iters = state["iters"]
|
474 |
+
optimizer.load_state_dict(state["optimizer"])
|
475 |
+
optimizer.load_scheduler_state_dict(state["scheduler"])
|
476 |
+
|
477 |
+
else:
|
478 |
+
epoch = 0
|
479 |
+
iters = 0
|
480 |
+
|
481 |
+
return model, optimizer, epoch, iters
|
482 |
+
|
483 |
+
|
484 |
+
def recursive_munch(d):
|
485 |
+
if isinstance(d, dict):
|
486 |
+
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
487 |
+
elif isinstance(d, list):
|
488 |
+
return [recursive_munch(v) for v in d]
|
489 |
+
else:
|
490 |
+
return d
|