import math import numpy as np import torch from torch import nn from torch.nn import functional as F from munch import Munch import json class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def intersperse(lst, item): result = [item] * (len(lst) * 2 + 1) result[1::2] = lst return result def kl_divergence(m_p, logs_p, m_q, logs_q): """KL(P||Q)""" kl = (logs_q - logs_p) - 0.5 kl += ( 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) ) return kl def rand_gumbel(shape): """Sample from the Gumbel distribution, protect from overflows.""" uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 return -torch.log(-torch.log(uniform_samples)) def rand_gumbel_like(x): g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) return g def slice_segments(x, ids_str, segment_size=4): ret = torch.zeros_like(x[:, :, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, :, idx_str:idx_end] return ret def slice_segments_audio(x, ids_str, segment_size=4): ret = torch.zeros_like(x[:, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, idx_str:idx_end] return ret def rand_slice_segments(x, x_lengths=None, segment_size=4): b, d, t = x.size() if x_lengths is None: x_lengths = t ids_str_max = x_lengths - segment_size + 1 ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to( dtype=torch.long ) ret = slice_segments(x, ids_str, segment_size) return ret, ids_str def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): position = torch.arange(length, dtype=torch.float) num_timescales = channels // 2 log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( num_timescales - 1 ) inv_timescales = min_timescale * torch.exp( torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment ) scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) signal = F.pad(signal, [0, 0, 0, channels % 2]) signal = signal.view(1, channels, length) return signal def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): b, channels, length = x.size() signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) return x + signal.to(dtype=x.dtype, device=x.device) def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): b, channels, length = x.size() signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) def subsequent_mask(length): mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) return mask @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def shift_1d(x): x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] return x def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def avg_with_mask(x, mask): assert mask.dtype == torch.float, "Mask should be float" if mask.ndim == 2: mask = mask.unsqueeze(1) if mask.shape[1] == 1: mask = mask.expand_as(x) return (x * mask).sum() / mask.sum() def generate_path(duration, mask): """ duration: [b, 1, t_x] mask: [b, 1, t_y, t_x] """ device = duration.device b, _, t_y, t_x = mask.shape cum_duration = torch.cumsum(duration, -1) cum_duration_flat = cum_duration.view(b * t_x) path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) path = path.view(b, t_x, t_y) path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] path = path.unsqueeze(1).transpose(2, 3) * mask return path def clip_grad_value_(parameters, clip_value, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) if clip_value is not None: clip_value = float(clip_value) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type if clip_value is not None: p.grad.data.clamp_(min=-clip_value, max=clip_value) total_norm = total_norm ** (1.0 / norm_type) return total_norm def log_norm(x, mean=-4, std=4, dim=2): """ normalized log mel -> mel -> norm -> log(norm) """ x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) return x def load_F0_models(path): # load F0 model from .JDC.model import JDCNet F0_model = JDCNet(num_class=1, seq_len=192) params = torch.load(path, map_location="cpu")["net"] F0_model.load_state_dict(params) _ = F0_model.train() return F0_model def modify_w2v_forward(self, output_layer=15): """ change forward method of w2v encoder to get its intermediate layer output :param self: :param layer: :return: """ from transformers.modeling_outputs import BaseModelOutput def forward( hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None conv_attention_mask = attention_mask if attention_mask is not None: # make sure padded tokens output 0 hidden_states = hidden_states.masked_fill( ~attention_mask.bool().unsqueeze(-1), 0.0 ) # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to( dtype=hidden_states.dtype ) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1], ) hidden_states = self.dropout(hidden_states) if self.embed_positions is not None: relative_position_embeddings = self.embed_positions(hidden_states) else: relative_position_embeddings = None deepspeed_zero3_is_enabled = False for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = ( True if self.training and (dropout_probability < self.config.layerdrop) else False ) if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, relative_position_embeddings, output_attentions, conv_attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, conv_attention_mask=conv_attention_mask, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if i == output_layer - 1: break if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) return forward MATPLOTLIB_FLAG = False def plot_spectrogram_to_numpy(spectrogram): global MATPLOTLIB_FLAG if not MATPLOTLIB_FLAG: import matplotlib import logging matplotlib.use("Agg") MATPLOTLIB_FLAG = True mpl_logger = logging.getLogger("matplotlib") mpl_logger.setLevel(logging.WARNING) import matplotlib.pylab as plt import numpy as np fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") plt.colorbar(im, ax=ax) plt.xlabel("Frames") plt.ylabel("Channels") plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def normalize_f0(f0_sequence): # Remove unvoiced frames (replace with -1) voiced_indices = np.where(f0_sequence > 0)[0] f0_voiced = f0_sequence[voiced_indices] # Convert to log scale log_f0 = np.log2(f0_voiced) # Calculate mean and standard deviation mean_f0 = np.mean(log_f0) std_f0 = np.std(log_f0) # Normalize the F0 sequence normalized_f0 = (log_f0 - mean_f0) / std_f0 # Create the normalized F0 sequence with unvoiced frames normalized_sequence = np.zeros_like(f0_sequence) normalized_sequence[voiced_indices] = normalized_f0 normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames return normalized_sequence def build_model(args, stage="DiT"): if stage == "DiT": from modules.flow_matching import CFM from modules.length_regulator import InterpolateRegulator length_regulator = InterpolateRegulator( channels=args.length_regulator.channels, sampling_ratios=args.length_regulator.sampling_ratios, is_discrete=args.length_regulator.is_discrete, in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None, vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False, codebook_size=args.length_regulator.content_codebook_size, n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1, quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0, f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False, n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512, ) cfm = CFM(args) nets = Munch( cfm=cfm, length_regulator=length_regulator, ) elif stage == 'codec': from dac.model.dac import Encoder from modules.quantize import ( FAquantizer, ) encoder = Encoder( d_model=args.DAC.encoder_dim, strides=args.DAC.encoder_rates, d_latent=1024, causal=args.causal, lstm=args.lstm, ) quantizer = FAquantizer( in_dim=1024, n_p_codebooks=1, n_c_codebooks=args.n_c_codebooks, n_t_codebooks=2, n_r_codebooks=3, codebook_size=1024, codebook_dim=8, quantizer_dropout=0.5, causal=args.causal, separate_prosody_encoder=args.separate_prosody_encoder, timbre_norm=args.timbre_norm, ) nets = Munch( encoder=encoder, quantizer=quantizer, ) else: raise ValueError(f"Unknown stage: {stage}") return nets def load_checkpoint( model, optimizer, path, load_only_params=True, ignore_modules=[], is_distributed=False, ): state = torch.load(path, map_location="cpu") params = state["net"] for key in model: if key in params and key not in ignore_modules: if not is_distributed: # strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix for k in list(params[key].keys()): if k.startswith("module."): params[key][k[len("module.") :]] = params[key][k] del params[key][k] model_state_dict = model[key].state_dict() # 过滤出形状匹配的键值对 filtered_state_dict = { k: v for k, v in params[key].items() if k in model_state_dict and v.shape == model_state_dict[k].shape } skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys()) if skipped_keys: print( f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}" ) print("%s loaded" % key) model[key].load_state_dict(filtered_state_dict, strict=False) _ = [model[key].eval() for key in model] if not load_only_params: epoch = state["epoch"] + 1 iters = state["iters"] optimizer.load_state_dict(state["optimizer"]) optimizer.load_scheduler_state_dict(state["scheduler"]) else: epoch = 0 iters = 0 return model, optimizer, epoch, iters def recursive_munch(d): if isinstance(d, dict): return Munch((k, recursive_munch(v)) for k, v in d.items()) elif isinstance(d, list): return [recursive_munch(v) for v in d] else: return d