import torch from torch import nn import math from modules.gpt_fast.model import ModelArgs, Transformer # from modules.torchscript_modules.gpt_fast_model import ModelArgs, Transformer from modules.wavenet import WN from modules.commons import sequence_mask from torch.nn.utils import weight_norm def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size self.max_period = 10000 self.scale = 1000 half = frequency_embedding_size // 2 freqs = torch.exp( -math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ) self.register_buffer("freqs", freqs) def timestep_embedding(self, t): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py args = self.scale * t[:, None].float() * self.freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if self.frequency_embedding_size % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t) t_emb = self.mlp(t_freq) return t_emb class StyleEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, input_size, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size) self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True)) self.input_size = input_size self.dropout_prob = dropout_prob def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) else: labels = self.style_in(labels) embeddings = labels return embeddings class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class DiT(torch.nn.Module): def __init__( self, args ): super(DiT, self).__init__() self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False model_args = ModelArgs( block_size=16384,#args.DiT.block_size, n_layer=args.DiT.depth, n_head=args.DiT.num_heads, dim=args.DiT.hidden_dim, head_dim=args.DiT.hidden_dim // args.DiT.num_heads, vocab_size=1024, uvit_skip_connection=self.uvit_skip_connection, ) self.transformer = Transformer(model_args) self.in_channels = args.DiT.in_channels self.out_channels = args.DiT.in_channels self.num_heads = args.DiT.num_heads self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True)) self.content_type = args.DiT.content_type # 'discrete' or 'continuous' self.content_codebook_size = args.DiT.content_codebook_size # for discrete content self.content_dim = args.DiT.content_dim # for continuous content self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) # discrete content self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content self.is_causal = args.DiT.is_causal self.n_f0_bins = args.DiT.n_f0_bins self.f0_bins = torch.arange(2, 1024, 1024 // args.DiT.n_f0_bins) self.f0_embedder = nn.Embedding(args.DiT.n_f0_bins, args.DiT.hidden_dim) self.f0_condition = args.DiT.f0_condition self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim) self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim) # self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True)) # self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True)) input_pos = torch.arange(16384) self.register_buffer("input_pos", input_pos) self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim) self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1) self.final_layer_type = args.DiT.final_layer_type # mlp or wavenet if self.final_layer_type == 'wavenet': self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim, kernel_size=args.wavenet.kernel_size, dilation_rate=args.wavenet.dilation_rate, n_layers=args.wavenet.num_layers, gin_channels=args.wavenet.hidden_dim, p_dropout=args.wavenet.p_dropout, causal=False) self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim) else: self.final_mlp = nn.Sequential( nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim), nn.SiLU(), nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels), ) self.transformer_style_condition = args.DiT.style_condition self.wavenet_style_condition = args.wavenet.style_condition assert args.DiT.style_condition == args.wavenet.style_condition self.class_dropout_prob = args.DiT.class_dropout_prob self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim) self.res_projection = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim) # residual connection from tranformer output to final output self.long_skip_connection = args.DiT.long_skip_connection self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim) self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 + args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token), args.DiT.hidden_dim) if self.style_as_token: self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim) def setup_caches(self, max_batch_size, max_seq_length): self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False) def forward(self, x, prompt_x, x_lens, t, style, cond, f0=None, mask_content=False): class_dropout = False if self.training and torch.rand(1) < self.class_dropout_prob: class_dropout = True if not self.training and mask_content: class_dropout = True # cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection cond_in_module = self.cond_projection B, _, T = x.size() t1 = self.t_embedder(t) # (N, D) cond = cond_in_module(cond) if self.f0_condition and f0 is not None: quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) # (N, T) cond = cond + self.f0_embedder(quantized_f0) x = x.transpose(1, 2) prompt_x = prompt_x.transpose(1, 2) x_in = torch.cat([x, prompt_x, cond], dim=-1) if self.transformer_style_condition and not self.style_as_token: x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1) if class_dropout: x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0 x_in = self.cond_x_merge_linear(x_in) # (N, T, D) if self.style_as_token: style = self.style_in(style) style = torch.zeros_like(style) if class_dropout else style x_in = torch.cat([style.unsqueeze(1), x_in], dim=1) if self.time_as_token: x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1) x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1) input_pos = self.input_pos[:x_in.size(1)] # (T,) x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None x_res = self.transformer(x_in, None if self.time_as_token else t1.unsqueeze(1), input_pos, x_mask_expanded) x_res = x_res[:, 1:] if self.time_as_token else x_res x_res = x_res[:, 1:] if self.style_as_token else x_res if self.long_skip_connection: x_res = self.skip_linear(torch.cat([x_res, x], dim=-1)) if self.final_layer_type == 'wavenet': x = self.conv1(x_res) x = x.transpose(1, 2) t2 = self.t_embedder2(t) x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection( x_res) # long residual connection x = self.final_layer(x, t1).transpose(1, 2) x = self.conv2(x) else: x = self.final_mlp(x_res) x = x.transpose(1, 2) return x