cannyest / app.py
srivatsavdamaraju's picture
Update app.py
b010a27 verified
import torch
import numpy as np
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
import streamlit as st
import cv2
# Load model and image processor
image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
# Set the device for model (CUDA if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Use FP16 if available (half precision for speed)
if torch.cuda.is_available():
model = model.half()
# Streamlit App
st.title("Depth Estimation from Webcam")
# Capture image from webcam
image_data = st.camera_input("Capture an image")
if image_data is not None:
# Convert the captured image data to a PIL image
image = Image.open(image_data)
# Prepare the image for the model
inputs = image_processor(images=image, return_tensors="pt").to(device)
# Model inference (no gradients needed)
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# Interpolate depth map to match the image's dimensions
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=(image.height, image.width), # Match the image's dimensions
mode="bicubic",
align_corners=False,
)
# Convert depth map to numpy for visualization
depth_map = prediction.squeeze().cpu().numpy()
# Normalize depth map for display (visualization purposes)
depth_map_normalized = np.uint8(depth_map / np.max(depth_map) * 255)
depth_map_colored = cv2.applyColorMap(depth_map_normalized, cv2.COLORMAP_JET)
# Display the original image and the depth map in Streamlit
st.image(image, caption="Captured Image", use_column_width=True)
st.image(depth_map_colored, caption="Depth Map", use_column_width=True)