import torch import numpy as np from PIL import Image from transformers import AutoImageProcessor, AutoModelForDepthEstimation import streamlit as st import cv2 # Load model and image processor image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf") model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf") # Set the device for model (CUDA if available) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Use FP16 if available (half precision for speed) if torch.cuda.is_available(): model = model.half() # Streamlit App st.title("Depth Estimation from Webcam") # Capture image from webcam image_data = st.camera_input("Capture an image") if image_data is not None: # Convert the captured image data to a PIL image image = Image.open(image_data) # Prepare the image for the model inputs = image_processor(images=image, return_tensors="pt").to(device) # Model inference (no gradients needed) with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # Interpolate depth map to match the image's dimensions prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=(image.height, image.width), # Match the image's dimensions mode="bicubic", align_corners=False, ) # Convert depth map to numpy for visualization depth_map = prediction.squeeze().cpu().numpy() # Normalize depth map for display (visualization purposes) depth_map_normalized = np.uint8(depth_map / np.max(depth_map) * 255) depth_map_colored = cv2.applyColorMap(depth_map_normalized, cv2.COLORMAP_JET) # Display the original image and the depth map in Streamlit st.image(image, caption="Captured Image", use_column_width=True) st.image(depth_map_colored, caption="Depth Map", use_column_width=True)