Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,151 +1,151 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
from gradio_imageslider import ImageSlider
|
4 |
-
from loadimg import load_img
|
5 |
-
import spaces
|
6 |
-
from transformers import AutoModelForImageSegmentation
|
7 |
-
import torch
|
8 |
-
from torchvision import transforms
|
9 |
-
from PIL import Image, ImageChops
|
10 |
-
from moviepy.editor import VideoFileClip, ImageSequenceClip
|
11 |
-
import numpy as np
|
12 |
-
from tqdm import tqdm
|
13 |
-
from uuid import uuid1
|
14 |
-
|
15 |
-
# Check CUDA availability
|
16 |
-
if torch.cuda.is_available():
|
17 |
-
device = "cuda"
|
18 |
-
else:
|
19 |
-
device = "cpu"
|
20 |
-
|
21 |
-
torch.set_float32_matmul_precision(["high", "highest"][0])
|
22 |
-
|
23 |
-
# Load the model
|
24 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
25 |
-
"briaai/RMBG-2.0", trust_remote_code=True
|
26 |
-
)
|
27 |
-
birefnet.to(device)
|
28 |
-
transform_image = transforms.Compose(
|
29 |
-
[
|
30 |
-
transforms.Resize((1024, 1024)),
|
31 |
-
transforms.ToTensor(),
|
32 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
33 |
-
]
|
34 |
-
)
|
35 |
-
|
36 |
-
output_folder = 'output_images'
|
37 |
-
if not os.path.exists(output_folder):
|
38 |
-
os.makedirs(output_folder)
|
39 |
-
|
40 |
-
def fn(image):
|
41 |
-
im = load_img(image, output_type="pil")
|
42 |
-
im = im.convert("RGB")
|
43 |
-
origin = im.copy()
|
44 |
-
image = process(im)
|
45 |
-
image_path = os.path.join(output_folder, "no_bg_image.png")
|
46 |
-
image.save(image_path)
|
47 |
-
return (image, origin), image_path
|
48 |
-
|
49 |
-
@spaces.GPU
|
50 |
-
def process(image):
|
51 |
-
image_size = image.size
|
52 |
-
input_images = transform_image(image).unsqueeze(0).to(device)
|
53 |
-
# Prediction
|
54 |
-
with torch.no_grad():
|
55 |
-
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
56 |
-
pred = preds[0].squeeze()
|
57 |
-
pred_pil = transforms.ToPILImage()(pred)
|
58 |
-
mask = pred_pil.resize(image_size)
|
59 |
-
image.putalpha(mask)
|
60 |
-
return image
|
61 |
-
|
62 |
-
def process_file(f):
|
63 |
-
name_path = f.rsplit(".",1)[0]+".png"
|
64 |
-
im = load_img(f, output_type="pil")
|
65 |
-
im = im.convert("RGB")
|
66 |
-
transparent = process(im)
|
67 |
-
transparent.save(name_path)
|
68 |
-
return name_path
|
69 |
-
|
70 |
-
def remove_background(image):
|
71 |
-
"""Remove background from a single image."""
|
72 |
-
input_images = transform_image(image).unsqueeze(0).to(device)
|
73 |
-
|
74 |
-
# Prediction
|
75 |
-
with torch.no_grad():
|
76 |
-
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
77 |
-
pred = preds[0].squeeze()
|
78 |
-
|
79 |
-
# Convert the prediction to a mask
|
80 |
-
mask = (pred * 255).byte() # Convert to 0-255 range
|
81 |
-
mask_pil = transforms.ToPILImage()(mask).convert("L")
|
82 |
-
mask_resized = mask_pil.resize(image.size, Image.LANCZOS)
|
83 |
-
|
84 |
-
# Apply the mask to the image
|
85 |
-
image.putalpha(mask_resized)
|
86 |
-
|
87 |
-
return image, mask_resized
|
88 |
-
|
89 |
-
def process_video(input_video_path):
|
90 |
-
"""Process a video to remove the background from each frame."""
|
91 |
-
# Load the video
|
92 |
-
video_clip = VideoFileClip(input_video_path)
|
93 |
-
|
94 |
-
# Process each frame
|
95 |
-
frames = []
|
96 |
-
for frame in tqdm(video_clip.iter_frames()):
|
97 |
-
frame_pil = Image.fromarray(frame)
|
98 |
-
frame_no_bg, mask_resized = remove_background(frame_pil)
|
99 |
-
path = "{}.png".format(uuid1())
|
100 |
-
frame_no_bg.save(path)
|
101 |
-
frame_no_bg = Image.open(path).convert("RGBA")
|
102 |
-
os.remove(path)
|
103 |
-
|
104 |
-
# Convert mask_resized to RGBA mode
|
105 |
-
mask_resized_rgba = mask_resized.convert("RGBA")
|
106 |
-
|
107 |
-
# Apply the mask using ImageChops.multiply
|
108 |
-
output = ImageChops.multiply(frame_no_bg, mask_resized_rgba)
|
109 |
-
output_np = np.array(output)
|
110 |
-
frames.append(output_np)
|
111 |
-
|
112 |
-
# Save the processed frames as a new video
|
113 |
-
output_video_path = os.path.join(output_folder, "no_bg_video.mp4")
|
114 |
-
processed_clip = ImageSequenceClip(frames, fps=video_clip.fps)
|
115 |
-
processed_clip.write_videofile(output_video_path, codec='libx264', ffmpeg_params=['-pix_fmt', 'yuva420p'])
|
116 |
-
|
117 |
-
return output_video_path
|
118 |
-
|
119 |
-
# Gradio components
|
120 |
-
slider1 = ImageSlider(label="RMBG-2.0", type="pil")
|
121 |
-
slider2 = ImageSlider(label="RMBG-2.0", type="pil")
|
122 |
-
image = gr.Image(label="Upload an image")
|
123 |
-
image2 = gr.Image(label="Upload an image", type="filepath")
|
124 |
-
text = gr.Textbox(label="Paste an image URL")
|
125 |
-
png_file = gr.File(label="output png file")
|
126 |
-
video_input = gr.Video(label="Upload a video")
|
127 |
-
video_output = gr.Video(label="Processed video")
|
128 |
-
|
129 |
-
# Example videos
|
130 |
-
example_videos = [
|
131 |
-
"pexels-cottonbro-5319934.mp4",
|
132 |
-
"300_A_car_is_running_on_the_road.mp4",
|
133 |
-
"A_Terracotta_Warrior_is_skateboarding_9033688.mp4"
|
134 |
-
]
|
135 |
-
|
136 |
-
# Gradio interfaces
|
137 |
-
tab1 = gr.Interface(
|
138 |
-
fn, inputs=image, outputs=[slider1, gr.File(label="output png file")], examples=[load_img("giraffe.jpg", output_type="pil")], api_name="image"
|
139 |
-
)
|
140 |
-
|
141 |
-
tab2 = gr.Interface(fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], examples=["http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg"], api_name="text")
|
142 |
-
#tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["giraffe.jpg"], api_name="png")
|
143 |
-
tab4 = gr.Interface(process_video, inputs=video_input, outputs=video_output, examples=example_videos, api_name="video")
|
144 |
-
|
145 |
-
# Gradio tabbed interface
|
146 |
-
demo = gr.TabbedInterface(
|
147 |
-
[tab4, tab1, tab2], ["input video", "input image", "input url"], title="RMBG-2.0 for background removal"
|
148 |
-
)
|
149 |
-
|
150 |
-
if __name__ == "__main__":
|
151 |
-
demo.launch(share=True, show_error=True)
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from gradio_imageslider import ImageSlider
|
4 |
+
from loadimg import load_img
|
5 |
+
import spaces
|
6 |
+
from transformers import AutoModelForImageSegmentation
|
7 |
+
import torch
|
8 |
+
from torchvision import transforms
|
9 |
+
from PIL import Image, ImageChops
|
10 |
+
from moviepy.editor import VideoFileClip, ImageSequenceClip
|
11 |
+
import numpy as np
|
12 |
+
from tqdm import tqdm
|
13 |
+
from uuid import uuid1
|
14 |
+
|
15 |
+
# Check CUDA availability
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
device = "cuda"
|
18 |
+
else:
|
19 |
+
device = "cpu"
|
20 |
+
|
21 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
22 |
+
|
23 |
+
# Load the model
|
24 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
25 |
+
"briaai/RMBG-2.0", trust_remote_code=True
|
26 |
+
)
|
27 |
+
birefnet.to(device)
|
28 |
+
transform_image = transforms.Compose(
|
29 |
+
[
|
30 |
+
transforms.Resize((1024, 1024)),
|
31 |
+
transforms.ToTensor(),
|
32 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
33 |
+
]
|
34 |
+
)
|
35 |
+
|
36 |
+
output_folder = 'output_images'
|
37 |
+
if not os.path.exists(output_folder):
|
38 |
+
os.makedirs(output_folder)
|
39 |
+
|
40 |
+
def fn(image):
|
41 |
+
im = load_img(image, output_type="pil")
|
42 |
+
im = im.convert("RGB")
|
43 |
+
origin = im.copy()
|
44 |
+
image = process(im)
|
45 |
+
image_path = os.path.join(output_folder, "no_bg_image.png")
|
46 |
+
image.save(image_path)
|
47 |
+
return (image, origin), image_path
|
48 |
+
|
49 |
+
@spaces.GPU
|
50 |
+
def process(image):
|
51 |
+
image_size = image.size
|
52 |
+
input_images = transform_image(image).unsqueeze(0).to(device)
|
53 |
+
# Prediction
|
54 |
+
with torch.no_grad():
|
55 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
56 |
+
pred = preds[0].squeeze()
|
57 |
+
pred_pil = transforms.ToPILImage()(pred)
|
58 |
+
mask = pred_pil.resize(image_size)
|
59 |
+
image.putalpha(mask)
|
60 |
+
return image
|
61 |
+
|
62 |
+
def process_file(f):
|
63 |
+
name_path = f.rsplit(".",1)[0]+".png"
|
64 |
+
im = load_img(f, output_type="pil")
|
65 |
+
im = im.convert("RGB")
|
66 |
+
transparent = process(im)
|
67 |
+
transparent.save(name_path)
|
68 |
+
return name_path
|
69 |
+
|
70 |
+
def remove_background(image):
|
71 |
+
"""Remove background from a single image."""
|
72 |
+
input_images = transform_image(image).unsqueeze(0).to(device)
|
73 |
+
|
74 |
+
# Prediction
|
75 |
+
with torch.no_grad():
|
76 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
77 |
+
pred = preds[0].squeeze()
|
78 |
+
|
79 |
+
# Convert the prediction to a mask
|
80 |
+
mask = (pred * 255).byte() # Convert to 0-255 range
|
81 |
+
mask_pil = transforms.ToPILImage()(mask).convert("L")
|
82 |
+
mask_resized = mask_pil.resize(image.size, Image.LANCZOS)
|
83 |
+
|
84 |
+
# Apply the mask to the image
|
85 |
+
image.putalpha(mask_resized)
|
86 |
+
|
87 |
+
return image, mask_resized
|
88 |
+
|
89 |
+
def process_video(input_video_path):
|
90 |
+
"""Process a video to remove the background from each frame."""
|
91 |
+
# Load the video
|
92 |
+
video_clip = VideoFileClip(input_video_path)
|
93 |
+
|
94 |
+
# Process each frame
|
95 |
+
frames = []
|
96 |
+
for frame in tqdm(video_clip.iter_frames()):
|
97 |
+
frame_pil = Image.fromarray(frame)
|
98 |
+
frame_no_bg, mask_resized = remove_background(frame_pil)
|
99 |
+
path = "{}.png".format(uuid1())
|
100 |
+
frame_no_bg.save(path)
|
101 |
+
frame_no_bg = Image.open(path).convert("RGBA")
|
102 |
+
os.remove(path)
|
103 |
+
|
104 |
+
# Convert mask_resized to RGBA mode
|
105 |
+
mask_resized_rgba = mask_resized.convert("RGBA")
|
106 |
+
|
107 |
+
# Apply the mask using ImageChops.multiply
|
108 |
+
output = ImageChops.multiply(frame_no_bg, mask_resized_rgba)
|
109 |
+
output_np = np.array(output)
|
110 |
+
frames.append(output_np)
|
111 |
+
|
112 |
+
# Save the processed frames as a new video
|
113 |
+
output_video_path = os.path.join(output_folder, "no_bg_video.mp4")
|
114 |
+
processed_clip = ImageSequenceClip(frames, fps=video_clip.fps)
|
115 |
+
processed_clip.write_videofile(output_video_path, codec='libx264', ffmpeg_params=['-pix_fmt', 'yuva420p'])
|
116 |
+
|
117 |
+
return output_video_path
|
118 |
+
|
119 |
+
# Gradio components
|
120 |
+
slider1 = ImageSlider(label="RMBG-2.0", type="pil")
|
121 |
+
slider2 = ImageSlider(label="RMBG-2.0", type="pil")
|
122 |
+
image = gr.Image(label="Upload an image")
|
123 |
+
image2 = gr.Image(label="Upload an image", type="filepath")
|
124 |
+
text = gr.Textbox(label="Paste an image URL")
|
125 |
+
png_file = gr.File(label="output png file")
|
126 |
+
video_input = gr.Video(label="Upload a video")
|
127 |
+
video_output = gr.Video(label="Processed video")
|
128 |
+
|
129 |
+
# Example videos
|
130 |
+
example_videos = [
|
131 |
+
"pexels-cottonbro-5319934.mp4",
|
132 |
+
"300_A_car_is_running_on_the_road.mp4",
|
133 |
+
"A_Terracotta_Warrior_is_skateboarding_9033688.mp4"
|
134 |
+
]
|
135 |
+
|
136 |
+
# Gradio interfaces
|
137 |
+
tab1 = gr.Interface(
|
138 |
+
fn, inputs=image, outputs=[slider1, gr.File(label="output png file")], examples=[load_img("giraffe.jpg", output_type="pil")], api_name="image"
|
139 |
+
)
|
140 |
+
|
141 |
+
tab2 = gr.Interface(fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], examples=["http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg"], api_name="text")
|
142 |
+
#tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["giraffe.jpg"], api_name="png")
|
143 |
+
tab4 = gr.Interface(process_video, inputs=video_input, outputs=video_output, examples=example_videos, api_name="video", cache_examples = False)
|
144 |
+
|
145 |
+
# Gradio tabbed interface
|
146 |
+
demo = gr.TabbedInterface(
|
147 |
+
[tab4, tab1, tab2], ["input video", "input image", "input url"], title="RMBG-2.0 for background removal"
|
148 |
+
)
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
demo.launch(share=True, show_error=True)
|