File size: 7,075 Bytes
f76c5d0
 
306aad1
 
 
 
 
 
886e7c2
306aad1
 
 
 
 
 
f76c5d0
306aad1
f76c5d0
306aad1
26f2a64
306aad1
26f2a64
886e7c2
306aad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886e7c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306aad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886e7c2
306aad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7312ea0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr

from io import BytesIO
import requests
import PIL
from PIL import Image
import numpy as np
import os
import cvlib as cv
import uuid
import torch
import cv2
from matplotlib import pyplot as plt
from torchvision import transforms
from diffusers import DiffusionPipeline

from share_btn import community_icon_html, loading_icon_html, share_js

auth_token = os.environ.get("API_TOKEN") or True

device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float32, revision="fp16", use_auth_token=auth_token).to(device)

transform = transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
      transforms.Resize((512, 512)),
])

def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(dict, prompt=""):
    init_image = dict["image"].convert("RGB").resize((512, 512))
    _init_image = cv2.cvtColor(np.array(init_image), cv2.COLOR_RGB2BGR)
    faces, confidences = cv.detect_face(_init_image)
    cv2.imwrite('data/init_image.jpg',_init_image)
    for (x,y,p,q) in faces:
        cv2.rectangle(_init_image,(x,y),(p,q),(255,0,0),2)
    cv2.imwrite('data/face_detected_image.jpg',_init_image)
    
    (x, y, x2, y2) = faces[0]

    face_mask = np.zeros((512, 512))
    face_mask[y:y2, x:x2] = 255
    cv2.imwrite('data/face_mask.jpg',face_mask)
    mask = Image.fromarray(face_mask).convert("RGB")

    # mask = dict["mask"].convert("RGB").resize((512, 512))
    output = pipe(prompt = prompt, image=init_image, mask_image=mask, guidance_scale=8) #7.5
    return output.images[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
'''

image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
    gr.HTML(read_content("header.html"))
    with gr.Group():
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload source image here").style(height=400)
                    with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                        prompt = gr.Textbox(placeholder = 'Enter name here (what you want in place of what is erased)', show_label=False, elem_id="input-text")
                        btn = gr.Button("Generate!").style(
                            margin=False,
                            rounded=(False, True, True, False),
                            full_width=False,
                        )
                with gr.Column():
                    image_out = gr.Image(label="Output (Somewhere in the parallel Universe)", elem_id="output-img").style(height=400)
                    with gr.Group(elem_id="share-btn-container"):
                        community_icon = gr.HTML(community_icon_html, visible=False)
                        loading_icon = gr.HTML(loading_icon_html, visible=False)
                        share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
            

            btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button])
            share_button.click(None, [], [], _js=share_js)



            gr.HTML(
                """
                    <div class="footer">
                        <p>Space by Sushil Thapa - Models from <a href="https://huggingface.co/runwayml" style="text-decoration: underline;" target="_blank">RunwayML</a> - Gradio Demo by 🤗 Hugging Face
                        </p>
                    </div>
                    <div class="acknowledgments">
                        <p><h4>LICENSE</h4>
        The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                        <p><h4>Biases and content acknowledgment</h4>
        Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
                    </div>
                """
            )

image_blocks.launch()