theQuert commited on
Commit
9c3e084
·
1 Parent(s): 59dc487
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ *DS_Store
2
+ bart_model
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: Event Triggered Article Updating System
3
- emoji: 🦀
4
- colorFrom: pink
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 3.40.1
8
  app_file: app.py
@@ -10,4 +10,5 @@ pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
1
  ---
2
  title: Event Triggered Article Updating System
3
+ emoji: 🤗
4
+ colorFrom: purple
5
+ colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 3.40.1
8
  app_file: app.py
 
10
  license: mit
11
  ---
12
 
13
+ # NetKUp-HF
14
+ Event Triggered Article Updating System on HF
app.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import os
4
+ import re
5
+ import numpy as np
6
+ import pandas as pd
7
+ from tqdm import tqdm
8
+ import matplotlib.pyplot as plt
9
+ import warnings
10
+ import nltk
11
+ import random, time
12
+ import datetime
13
+ # nltk.download("stopwords")
14
+ from nltk.corpus import stopwords
15
+ import torch
16
+ import torch.nn as nn
17
+ from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler,random_split
18
+ from sklearn.metrics import classification_report
19
+ import transformers
20
+ from transformers import BartForSequenceClassification, AdamW, BartTokenizer, get_linear_schedule_with_warmup, pipeline, set_seed
21
+ from transformers import pipeline, set_seed, BartTokenizer
22
+ from datasets import load_dataset, load_metric
23
+ from dotenv import load_dotenv
24
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
25
+ from nltk.tokenize import sent_tokenize
26
+ from datasets import Dataset, load_metric
27
+ import datasets
28
+ import gradio as gr
29
+ import pyperclip
30
+ import openai
31
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
32
+ from transformers import TrainingArguments, Trainer
33
+ # from vicuna_generate import *
34
+ # from convert_article import *
35
+
36
+ # Data preprocessing
37
+
38
+ def text_preprocessing(s):
39
+ """
40
+ - Lowercase the sentence
41
+ - Change "'t" to "not"
42
+ - Remove "@name"
43
+ - Isolate and remove punctuations except "?"
44
+ - Remove other special characters
45
+ - Remove stop words except "not" and "can"
46
+ - Remove trailing whitespace
47
+ """
48
+ s = s.lower()
49
+ # Change 't to 'not'
50
+ s = re.sub(r"\'t", " not", s)
51
+ # Remove @name
52
+ s = re.sub(r'(@.*?)[\s]', ' ', s)
53
+ # Isolate and remove punctuations except '?'
54
+ s = re.sub(r'([\'\"\.\(\)\!\?\\\/\,])', r' \1 ', s)
55
+ s = re.sub(r'[^\w\s\?]', ' ', s)
56
+ # Remove some special characters
57
+ s = re.sub(r'([\;\:\|•«\n])', ' ', s)
58
+ # Remove stopwords except 'not' and 'can'
59
+ s = " ".join([word for word in s.split()
60
+ if word not in stopwords.words('english')
61
+ or word in ['not', 'can']])
62
+ # Remove trailing whitespace
63
+ s = re.sub(r'\s+', ' ', s).strip()
64
+
65
+ return s
66
+
67
+ def text_preprocessing(text):
68
+ """
69
+ - Remove entity mentions (eg. '@united')
70
+ - Correct errors (eg. '&' to '&')
71
+ @param text (str): a string to be processed.
72
+ @return text (Str): the processed string.
73
+ """
74
+ # Remove '@name'
75
+ text = re.sub(r'(@.*?)[\s]', ' ', text)
76
+
77
+ # Replace '&' with '&'
78
+ text = re.sub(r'&', '&', text)
79
+
80
+ # Remove trailing whitespace
81
+ text = re.sub(r'\s+', ' ', text).strip()
82
+
83
+ return text
84
+
85
+ # Total number of training steps is [number of batches] x [number of epochs].
86
+ # (Note that this is not the same as the number of training samples).
87
+
88
+ # Create the learning rate scheduler.
89
+
90
+ # Function to calculate the accuracy of our predictions vs labels
91
+ def flat_accuracy(preds, labels):
92
+ pred_flat = np.argmax(preds, axis=1).flatten()
93
+ labels_flat = labels.flatten()
94
+ return np.sum(pred_flat == labels_flat) / len(labels_flat)
95
+
96
+ def format_time(elapsed):
97
+ '''
98
+ Takes a time in seconds and returns a string hh:mm:ss
99
+ '''
100
+ # Round to the nearest second.
101
+ elapsed_rounded = int(round((elapsed)))
102
+ # Format as hh:mm:ss
103
+ return str(datetime.timedelta(seconds=elapsed_rounded))
104
+
105
+ def decode(paragraphs_needed):
106
+ # model_ckpt = "facebook/bart-large-cnn"
107
+ tokenizer = AutoTokenizer.from_pretrained("theQuert/NetKUp-tokenzier")
108
+ # pipe = pipeline("summarization", model="bart-decoder",tokenizer=tokenizer)
109
+ pipe = pipeline("summarization", model="hyesunyun/update-summarization-bart-large-longformer",tokenizer=tokenizer)
110
+ contexts = [str(pipe(paragraph)) for paragraph in paragraphs_needed]
111
+ return contexts
112
+
113
+ def split_article(article, trigger):
114
+ if article.split("\n"): article = article.replace("\n", "\\\\c\\\\c")
115
+ paragraphs = article.replace("\\c\\c", "\c\c").split("\\\\c\\\\c")
116
+ pars = [str(par) + " -- " + str(trigger) for par in paragraphs]
117
+ # pd.DataFrame({"paragraph": pars}).to_csv("./util/experiments/input_paragraphs.csv")
118
+ return pars
119
+
120
+ def config():
121
+ load_dotenv()
122
+
123
+ def call_gpt(paragraph, trigger):
124
+ openai.api_key = os.environ.get("GPT_API")
125
+ tokenizer = BartTokenizer.from_pretrained("theQuert/NetKUp-tokenzier")
126
+ inputs_for_gpt = f"""
127
+ As an article writer, your task is to provide an updated paragraph in the length same as non-updated paragraph based on the given non-updated paragraph and a triggered news.
128
+ Non-updated paragraph:
129
+ {paragraph}
130
+
131
+ Triggered News:
132
+ {trigger}
133
+ """
134
+ # merged_with_prompts.append(merged.strip())
135
+ # pd.DataFrame({"paragraph": merged_with_prompts}).to_csv("./experiments/paragraphs_with_prompts.csv")
136
+
137
+ completion = openai.ChatCompletion.create(
138
+ model = "gpt-3.5-turbo",
139
+ messages = [
140
+ {"role": "user", "content": inputs_for_gpt}
141
+ ]
142
+ )
143
+ response = completion.choices[0].message.content
144
+ return str(response)
145
+
146
+ def call_vicuna(paragraphs_tirgger):
147
+ tokenizer = BartTokenizer.from_pretrained("theQuert/NetKUp-tokenzier")
148
+ merged_with_prompts = []
149
+ for paragraph in paragraphs:
150
+ merged = f"""
151
+ As an article writer, your task is to provide an updated paragraph in the length same as non-updated paragraph based on the given non-updated paragraph and a triggered news.
152
+ Non-updated paragraph:
153
+ {paragraph}
154
+
155
+ Triggered News:
156
+ {trigger}
157
+ """
158
+ merged_with_prompts.append(merged.strip())
159
+ pd.DataFrame({"paragraph": merged_with_prompts}).to_csv("./util/experiments/paragraphs_with_prompts.csv")
160
+ responses = vicuna_output()
161
+ return responses
162
+
163
+
164
+ def main(input_article, input_trigger):
165
+ # csv_path = "./util/experiments/input_paragraphs.csv"
166
+ # if os.path.isfile(csv_path):
167
+ # os.remove(csv_path)
168
+ modified = "TRUE"
169
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
170
+ device="cpu"
171
+ # tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn', do_lower_case=True)
172
+ tokenizer = AutoTokenizer.from_pretrained('theQuert/NetKUp-tokenzier')
173
+ batch_size = 8
174
+ model = torch.load("./util/bart_model", map_location=torch.device("cpu"))
175
+ optimizer = AdamW(model.parameters(),
176
+ lr = 2e-5,
177
+ eps = 1e-8
178
+ )
179
+
180
+ # split the input article to paragraphs in tmp csv format
181
+ data_test = split_article(input_article, input_trigger)
182
+
183
+ seed_val = 42
184
+ random.seed(seed_val)
185
+ np.random.seed(seed_val)
186
+ torch.manual_seed(seed_val)
187
+ # torch.cuda.manual_seed_all(seed_val)
188
+
189
+ input_ids = []
190
+ attention_masks = []
191
+ for sent in data_test:
192
+ encoded_dict = tokenizer.encode_plus(
193
+ text_preprocessing(sent),
194
+ add_special_tokens = True,
195
+ max_length = 600,
196
+ pad_to_max_length = True,
197
+ return_attention_mask = True,
198
+ return_tensors = 'pt',
199
+ truncation=True
200
+ )
201
+ input_ids.append(encoded_dict['input_ids'])
202
+ attention_masks.append(encoded_dict['attention_mask'])
203
+ input_ids = torch.cat(input_ids, dim=0)
204
+ attention_masks = torch.cat(attention_masks, dim=0)
205
+
206
+ test_dataset = TensorDataset(input_ids, attention_masks)
207
+ test_dataloader = DataLoader(
208
+ test_dataset,
209
+ sampler = SequentialSampler(test_dataset),
210
+ batch_size = batch_size
211
+ )
212
+
213
+ # Predictions
214
+ predictions = []
215
+ for batch in test_dataloader:
216
+ b_input_ids = batch[0].to(device)
217
+ b_input_mask = batch[1].to(device)
218
+ with torch.no_grad():
219
+ output= model(b_input_ids,
220
+ attention_mask=b_input_mask)
221
+ logits = output.logits
222
+ logits = logits.detach().cpu().numpy()
223
+ pred_flat = np.argmax(logits, axis=1).flatten()
224
+ predictions.extend(list(pred_flat))
225
+
226
+ # Write predictions for each paragraph
227
+ df_output = pd.DataFrame({"target": predictions}).to_csv('./util/experiments/classification.csv', index=False)
228
+ if len(data_test)==1: predictions[0] = 1
229
+
230
+ # extract ids for update-needed paragraphs (extract the idx with predicted target == 1)
231
+ pos_ids = [idx for idx in range(len(predictions)) if predictions[idx]==1]
232
+ neg_ids = [idx for idx in range(len(predictions)) if predictions[idx]==0]
233
+
234
+ # feed the positive paragraphs to decoder
235
+ paragraphs_needed = [data_test[idx] for idx in pos_ids]
236
+ pd.DataFrame({"paragraph": paragraphs_needed}).to_csv("./util/experiments/paragraphs_needed.csv", index=False)
237
+
238
+ # updated_paragraphs = decode(input_paragraph, input_trigger)
239
+ config()
240
+ updated_paragraphs = [call_gpt(paragraph.split(" -- ")[0], input_trigger) for paragraph in paragraphs_needed]
241
+ # updated_paragraphs = call_vicuna(paragraphs_needed, input_trigger)
242
+
243
+ # merge updated paragraphs with non-updated paragraphs
244
+ paragraphs_merged = data_test.copy()
245
+ paragraphs_merged = [str(par).split(" -- ")[0] for par in paragraphs_merged]
246
+ for idx in range(len(pos_ids)):
247
+ paragraphs_merged[pos_ids[idx]] = updated_paragraphs[idx]
248
+
249
+ sep = "\n"
250
+ # paragarphs_merged = ["".join(par.split(" -- ")[:-1]) for par in paragraphs_merged]
251
+ updated_article = str(sep.join(paragraphs_merged))
252
+ updated_article = updated_article.replace("[{'summary_text': '", "").replace("'}]", "").strip()
253
+ class_res = pd.read_csv("./util/experiments/classification.csv")
254
+ if class_res.target.values.all() == 0: modified="False"
255
+
256
+ if len(data_test)==1:
257
+ modified="TRUE"
258
+ updated_article = call_gpt(input_article, input_trigger)
259
+ with open("./util/experiments/updated_article.txt", "w") as f:
260
+ f.write(updated_article)
261
+
262
+ # combine the predictions and paragraphs into csv format file
263
+ merged_par_pred_df = pd.DataFrame({"paragraphs": data_test, "predictions": predictions}).to_csv("./util/experiments/par_with_class.csv")
264
+ # return updated_article, modified, merged_par_pred_df
265
+ modified_in_all = str(len(paragraphs_needed)) + " / " + str(len(data_test))
266
+ return updated_article, modified_in_all
267
+
268
+ def copy_to_clipboard(t):
269
+ with open("./util/experiments/updated_article.txt", "r") as f:
270
+ t = f.read()
271
+ pyperclip.copy(t)
272
+
273
+ demo = gr.Interface(
274
+ main,
275
+ [
276
+ gr.Textbox(
277
+ lines=2, label="Non-updated Article", placeholder="Input the article..."
278
+ ),
279
+ gr.Textbox(
280
+ lines=2, label="Triggered News Event", placeholder="Input the triggered news event..."
281
+ )
282
+ ],
283
+ [
284
+ gr.Textbox(
285
+ lines=25,
286
+ label="Output",
287
+ ),
288
+ gr.Textbox(
289
+ lines=1,
290
+ label="#MODIFIED/ALL"
291
+ ),
292
+ # btn = gr.Button(value="Copy Updated Article to Clipboard")
293
+ # btn.click(copy_to_clipboard)
294
+ # gr.components.Button(value="Copy Updated Article to Clipboard", fn=copy_to_clipboard),
295
+ ],
296
+ title="Event Triggered Article Updating System",
297
+ description="Powered by YTLee",
298
+ )
299
+
300
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.4.0
2
+ accelerate==0.15.0
3
+ aiofiles==23.2.1
4
+ aiohttp==3.8.5
5
+ aiosignal==1.3.1
6
+ altair==5.0.1
7
+ annotated-types==0.5.0
8
+ anyio==3.7.1
9
+ appdirs==1.4.4
10
+ async-timeout==4.0.3
11
+ attrs==23.1.0
12
+ bitsandbytes==0.37.0
13
+ cachetools==5.3.1
14
+ certifi==2023.7.22
15
+ charset-normalizer==3.2.0
16
+ click==8.1.6
17
+ cmake==3.27.1
18
+ contourpy==1.1.0
19
+ cycler==0.11.0
20
+ datasets
21
+ deepspeed==0.8.3
22
+ dill
23
+ docker-pycreds==0.4.0
24
+ einops==0.6.1
25
+ evaluate==0.4.0
26
+ exceptiongroup==1.1.2
27
+ fairscale==0.4.13
28
+ fastapi==0.101.0
29
+ ffmpy==0.3.1
30
+ filelock==3.12.2
31
+ fonttools==4.42.0
32
+ frozenlist==1.4.0
33
+ fsspec==2023.6.0
34
+ gitdb==4.0.10
35
+ GitPython==3.1.32
36
+ gradio==3.20.0
37
+ gradio-client==0.4.0
38
+ grpcio==1.57.0
39
+ h11==0.14.0
40
+ hjson==3.1.0
41
+ httpcore==0.17.3
42
+ httpx==0.24.1
43
+ huggingface-hub==0.13.3
44
+ idna==3.4
45
+ importlib-metadata==6.8.0
46
+ importlib-resources==6.0.1
47
+ Jinja2==3.1.2
48
+ joblib==1.3.2
49
+ jsonschema==4.19.0
50
+ jsonschema-specifications==2023.7.1
51
+ kiwisolver==1.4.4
52
+ linkify-it-py==2.0.2
53
+ lit==16.0.6
54
+ loralib==0.1.1
55
+ Markdown==3.4.4
56
+ MarkupSafe==2.1.3
57
+ matplotlib==3.7.2
58
+ mdit-py-plugins==0.3.3
59
+ mdurl==0.1.2
60
+ msgpack==1.0.5
61
+ multidict==6.0.4
62
+ multiprocess==0.70.15
63
+ networkx==3.1
64
+ ninja==1.11.1
65
+ nltk==3.6.1
66
+ numpy==1.24.4
67
+ nvitop==1.0.0
68
+ oauthlib==3.2.2
69
+ openai==0.27.8
70
+ orjson==3.9.4
71
+ packaging==23.1
72
+ pandas==2.0.3
73
+ pathtools==0.1.2
74
+ peft==0.3.0
75
+ Pillow==10.0.0
76
+ pkgutil-resolve-name==1.3.10
77
+ protobuf==4.24.0
78
+ psutil==5.9.5
79
+ py-cpuinfo==9.0.0
80
+ pyarrow==12.0.1
81
+ pyasn1==0.5.0
82
+ pyasn1-modules==0.3.0
83
+ pycryptodome==3.18.0
84
+ pydantic==1.10.2
85
+ pydantic-core==2.4.0
86
+ pydub==0.25.1
87
+ Pygments==2.16.1
88
+ pyparsing==3.0.9
89
+ pyperclip==1.8.2
90
+ python-dateutil==2.8.2
91
+ python-dotenv==1.0.0
92
+ python-multipart==0.0.6
93
+ pytz==2023.3
94
+ PyYAML==6.0.1
95
+ ray==2.6.2
96
+ referencing==0.30.2
97
+ regex==2023.8.8
98
+ requests==2.31.0
99
+ requests-oauthlib==1.3.1
100
+ responses==0.18.0
101
+ rich==13.5.2
102
+ rpds-py==0.9.2
103
+ rsa==4.9
104
+ scikit-learn==1.3.0
105
+ scipy==1.10.1
106
+ semantic-version==2.10.0
107
+ sentencepiece==0.1.96
108
+ sentry-sdk==1.29.2
109
+ setproctitle==1.3.2
110
+ six==1.16.0
111
+ smmap==5.0.0
112
+ sniffio==1.3.0
113
+ starlette==0.27.0
114
+ tabulate==0.9.0
115
+ tensorboard==2.12.0
116
+ tensorboard-data-server==0.7.1
117
+ tensorboard-plugin-wit==1.8.1
118
+ termcolor==2.3.0
119
+ texttable==1.6.7
120
+ threadpoolctl==3.2.0
121
+ tokenizers==0.13.2
122
+ toolz==0.12.0
123
+ torch==1.13.1
124
+ torchtyping==0.1.4
125
+ torchvision==0.14.1
126
+ tqdm==4.65.0
127
+ transformers==4.28.0
128
+ triton==2.0.0
129
+ typeguard==4.1.0
130
+ typing-extensions
131
+ tzdata==2023.3
132
+ uc-micro-py==1.0.2
133
+ urllib3==2.0.4
134
+ uvicorn==0.23.2
135
+ wandb==0.13.10
136
+ websockets==11.0.3
137
+ Werkzeug==2.3.6
138
+ xxhash==3.3.0
139
+ yarl==1.9.2
140
+ zipp==3.16.2
141
+
util/experiments/classification.csv ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ target
2
+ 0
3
+ 0
4
+ 0
5
+ 0
6
+ 0
7
+ 0
8
+ 0
9
+ 0
10
+ 0
11
+ 0
12
+ 0
13
+ 0
14
+ 0
15
+ 0
16
+ 0
17
+ 0
18
+ 0
19
+ 0
20
+ 0
21
+ 0
22
+ 0
23
+ 0
24
+ 0
25
+ 0
26
+ 0
27
+ 0
28
+ 0
29
+ 0
30
+ 0
31
+ 0
32
+ 0
33
+ 0
34
+ 0
35
+ 0
36
+ 0
37
+ 0
38
+ 0
39
+ 0
40
+ 0
41
+ 0
42
+ 0
43
+ 0
44
+ 0
45
+ 0
46
+ 0
47
+ 0
48
+ 0
49
+ 0
50
+ 0
51
+ 0
52
+ 0
53
+ 0
54
+ 0
55
+ 0
56
+ 0
57
+ 0
58
+ 0
59
+ 0
60
+ 0
61
+ 0
62
+ 0
63
+ 0
64
+ 0
65
+ 0
66
+ 0
67
+ 0
68
+ 0
69
+ 1
70
+ 1
71
+ 1
72
+ 0
73
+ 0
74
+ 0
75
+ 0
76
+ 0
77
+ 0
78
+ 0
79
+ 0
util/experiments/here_comes_outputs ADDED
@@ -0,0 +1 @@
 
 
1
+ metadata
util/experiments/paragraphs_needed.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ paragraph
2
+ "On 2 August there were 15 new cases of COVID-19, 2 overseas acquired. Consequently, the South-east Queensland’s lockdown was extended until 4:00pm on 8 August (Sunday). The same day, because of the extension, the Ekka agricultural show was cancelled for the second year, 5 days before it was to be open to the public from 7 August (Saturday). [ADD] <Timeline - Brisbane lockdowns> -- 'Cairns and Yarrabah enter a snap three-day lockdown after an ""unexpected"" case of COVID-19 was reported in a taxi driver from Kanimbla who was infectious in Far North Queensland for 10 days. \n'"
3
+ "On 8 August the lockdown in SE Queensland ended, though some restrictions remained in force, including mandatory wearing of masks. This was due to an ""unexpected"" case of COVID-19, a taxi driver who was infectious in the community for ten days. [ADD] <Timeline - Brisbane lockdowns> -- 'Cairns and Yarrabah enter a snap three-day lockdown after an ""unexpected"" case of COVID-19 was reported in a taxi driver from Kanimbla who was infectious in Far North Queensland for 10 days. \n'"
4
+ "On [ADD] 9 August, Cairns went into lockdown from 4:00pm for three days. The next festival event is scheduled for Saturday, 22 May 2021. <Event cancellations> -- 'Cairns and Yarrabah enter a snap three-day lockdown after an ""unexpected"" case of COVID-19 was reported in a taxi driver from Kanimbla who was infectious in Far North Queensland for 10 days. \n'"