FNeVR_demo / modules /dense_motion.py
thegenerativegeneration's picture
Duplicate from PascalLiu/FNeVR_demo
8af689e
raw
history blame
5.12 kB
from torch import nn
import torch.nn.functional as F
import torch
from modules.util import Hourglass, AntiAliasInterpolation2d, make_coordinate_grid, kp2gaussian
class DenseMotionNetwork(nn.Module):
"""
Module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
"""
def __init__(self, block_expansion, num_blocks, max_features, num_kp, num_channels, estimate_occlusion_map=False,
scale_factor=1, kp_variance=0.01):
super(DenseMotionNetwork, self).__init__()
self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp + 1) * (num_channels + 1),
max_features=max_features, num_blocks=num_blocks)
self.mask = nn.Conv2d(self.hourglass.out_filters, num_kp + 1, kernel_size=(7, 7), padding=(3, 3))
if estimate_occlusion_map:
self.occlusion = nn.Conv2d(self.hourglass.out_filters, 1, kernel_size=(7, 7), padding=(3, 3))
else:
self.occlusion = None
self.num_kp = num_kp
self.scale_factor = scale_factor
self.kp_variance = kp_variance
if self.scale_factor != 1:
self.down = AntiAliasInterpolation2d(num_channels, self.scale_factor)
def create_heatmap_representations(self, source_image, kp_driving, kp_source):
"""
Eq 6. in the paper H_k(z)
"""
spatial_size = source_image.shape[2:]
gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=self.kp_variance)
gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=self.kp_variance)
heatmap = gaussian_driving - gaussian_source
#adding background feature
zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1]).type(heatmap.type())
heatmap = torch.cat([zeros, heatmap], dim=1)
heatmap = heatmap.unsqueeze(2)
return heatmap
def create_sparse_motions(self, source_image, kp_driving, kp_source):
"""
Eq 4. in the paper T_{s<-d}(z)
"""
bs, _, h, w = source_image.shape
identity_grid = make_coordinate_grid((h, w), type=kp_source['value'].type())
identity_grid = identity_grid.view(1, 1, h, w, 2)
coordinate_grid = identity_grid - kp_driving['value'].view(bs, self.num_kp, 1, 1, 2)
if 'jacobian' in kp_driving:
jacobian = torch.matmul(kp_source['jacobian'], torch.inverse(kp_driving['jacobian']))
jacobian = jacobian.unsqueeze(-3).unsqueeze(-3)
jacobian = jacobian.repeat(1, 1, h, w, 1, 1)
coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1))
coordinate_grid = coordinate_grid.squeeze(-1)
driving_to_source = coordinate_grid + kp_source['value'].view(bs, self.num_kp, 1, 1, 2)
#adding background feature
identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1)
sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1)
return sparse_motions
def create_deformed_source_image(self, source_image, sparse_motions):
"""
Eq 7. in the paper \hat{T}_{s<-d}(z)
"""
bs, _, h, w = source_image.shape
source_repeat = source_image.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp + 1, 1, 1, 1, 1)
source_repeat = source_repeat.view(bs * (self.num_kp + 1), -1, h, w)
sparse_motions = sparse_motions.view((bs * (self.num_kp + 1), h, w, -1))
sparse_deformed = F.grid_sample(source_repeat, sparse_motions)
sparse_deformed = sparse_deformed.view((bs, self.num_kp + 1, -1, h, w))
return sparse_deformed
def forward(self, source_image, kp_driving, kp_source):
if self.scale_factor != 1:
source_image = self.down(source_image)
bs, _, h, w = source_image.shape
out_dict = dict()
heatmap_representation = self.create_heatmap_representations(source_image, kp_driving, kp_source)
sparse_motion = self.create_sparse_motions(source_image, kp_driving, kp_source)
deformed_source = self.create_deformed_source_image(source_image, sparse_motion)
out_dict['sparse_deformed'] = deformed_source
input = torch.cat([heatmap_representation, deformed_source], dim=2)
input = input.view(bs, -1, h, w)
prediction = self.hourglass(input)
mask = self.mask(prediction)
mask = F.softmax(mask, dim=1)
out_dict['mask'] = mask
mask = mask.unsqueeze(2)
sparse_motion = sparse_motion.permute(0, 1, 4, 2, 3)
deformation = (sparse_motion * mask).sum(dim=1)
deformation = deformation.permute(0, 2, 3, 1)
out_dict['deformation'] = deformation
# Sec. 3.2 in the paper
if self.occlusion:
occlusion_map = torch.sigmoid(self.occlusion(prediction))
out_dict['occlusion_map'] = occlusion_map
return out_dict