Spaces:
Runtime error
Runtime error
therealcyberlord
commited on
Commit
·
4c8b94b
1
Parent(s):
d4f2f17
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
4 |
+
import numpy as np
|
5 |
+
from pyannote.audio import Pipeline
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import os
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# Check and set device
|
12 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
13 |
+
print(f"Using device: {device}")
|
14 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
15 |
+
|
16 |
+
# Model and pipeline setup
|
17 |
+
model_id = "distil-whisper/distil-small.en"
|
18 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
19 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
20 |
+
)
|
21 |
+
model.to(device)
|
22 |
+
|
23 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
24 |
+
|
25 |
+
pipe = pipeline(
|
26 |
+
"automatic-speech-recognition",
|
27 |
+
model=model,
|
28 |
+
tokenizer=processor.tokenizer,
|
29 |
+
feature_extractor=processor.feature_extractor,
|
30 |
+
max_new_tokens=128,
|
31 |
+
torch_dtype=torch_dtype,
|
32 |
+
device=device,
|
33 |
+
)
|
34 |
+
|
35 |
+
# diarization pipeline (renamed to avoid conflict)
|
36 |
+
diarization_pipeline = Pipeline.from_pretrained(
|
37 |
+
"pyannote/speaker-diarization-3.0", use_auth_token=os.getenv("HF_KEY")
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
def transcribe(audio):
|
42 |
+
sr, data = audio
|
43 |
+
processed_data = np.array(data).astype(np.float32) / 32767.0
|
44 |
+
waveform_tensor = torch.tensor(processed_data[np.newaxis, :])
|
45 |
+
|
46 |
+
# results from the pipeline
|
47 |
+
transcription_res = pipe({"sampling_rate": sr, "raw": processed_data})["text"]
|
48 |
+
diarization_res = diarization_pipeline(
|
49 |
+
{"waveform": waveform_tensor, "sample_rate": sr}
|
50 |
+
)
|
51 |
+
|
52 |
+
return transcription_res, diarization_res
|
53 |
+
|
54 |
+
|
55 |
+
demo = gr.Interface(
|
56 |
+
fn=transcribe,
|
57 |
+
inputs=gr.Audio(sources=["upload", "microphone"]),
|
58 |
+
outputs=[
|
59 |
+
gr.Textbox(lines=3, info="audio transcription"),
|
60 |
+
gr.Textbox(info="speaker diarization"),
|
61 |
+
],
|
62 |
+
title="Automatic Speech Recognition 🗣️",
|
63 |
+
description="Transcribe your speech to text with distilled whisper",
|
64 |
+
)
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
demo.launch()
|