wagnercosta
commited on
Upload 2 files
Browse files- main.py +210 -0
- phi3_instruct_graph.py +98 -0
main.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph
|
4 |
+
from textwrap import dedent
|
5 |
+
import rapidjson
|
6 |
+
import spaces
|
7 |
+
from pyvis.network import Network
|
8 |
+
import networkx as nx
|
9 |
+
import spacy
|
10 |
+
from spacy import displacy
|
11 |
+
from spacy.tokens import Span
|
12 |
+
import random
|
13 |
+
|
14 |
+
json_example = {'nodes': [{'id': 'Aerosmith', 'type': 'organization', 'detailed_type': 'rock band'}, {'id': 'Steven Tyler', 'type': 'person', 'detailed_type': 'lead singer'}, {'id': 'vocal cord injury', 'type': 'medical condition', 'detailed_type': 'fractured larynx'}, {'id': 'retirement', 'type': 'event', 'detailed_type': 'announcement'}, {'id': 'touring', 'type': 'activity', 'detailed_type': 'musical performance'}, {'id': 'September 2023', 'type': 'date', 'detailed_type': 'specific time'}], 'edges': [{'from': 'Aerosmith', 'to': 'Steven Tyler', 'label': 'led by'}, {'from': 'Steven Tyler', 'to': 'vocal cord injury', 'label': 'suffered'}, {'from': 'vocal cord injury', 'to': 'retirement', 'label': 'caused'}, {'from': 'retirement', 'to': 'touring', 'label': 'ended'}, {'from': 'vocal cord injury', 'to': 'September 2023', 'label': 'occurred in'}]}
|
15 |
+
|
16 |
+
@spaces.GPU
|
17 |
+
def extract(text, model):
|
18 |
+
model = Phi3InstructGraph(model=model)
|
19 |
+
result = model.extract(text)
|
20 |
+
return rapidjson.loads(result)
|
21 |
+
|
22 |
+
def handle_text(text):
|
23 |
+
return " ".join(text.split())
|
24 |
+
|
25 |
+
def get_random_color():
|
26 |
+
return f"#{random.randint(0, 0xFFFFFF):06x}"
|
27 |
+
|
28 |
+
def get_random_light_color():
|
29 |
+
# Generate higher RGB values to ensure a lighter color
|
30 |
+
r = random.randint(128, 255)
|
31 |
+
g = random.randint(128, 255)
|
32 |
+
b = random.randint(128, 255)
|
33 |
+
return f"#{r:02x}{g:02x}{b:02x}"
|
34 |
+
|
35 |
+
def get_random_color():
|
36 |
+
return f"#{random.randint(0, 0xFFFFFF):06x}"
|
37 |
+
|
38 |
+
def find_token_indices(doc, substring, text):
|
39 |
+
result = []
|
40 |
+
start_index = text.find(substring)
|
41 |
+
|
42 |
+
while start_index != -1:
|
43 |
+
end_index = start_index + len(substring)
|
44 |
+
start_token = None
|
45 |
+
end_token = None
|
46 |
+
|
47 |
+
for token in doc:
|
48 |
+
if token.idx == start_index:
|
49 |
+
start_token = token.i
|
50 |
+
if token.idx + len(token) == end_index:
|
51 |
+
end_token = token.i + 1
|
52 |
+
|
53 |
+
if start_token is None or end_token is None:
|
54 |
+
print(f"Token boundaries not found for '{substring}' at index {start_index}")
|
55 |
+
else:
|
56 |
+
result.append({
|
57 |
+
"start": start_token,
|
58 |
+
"end": end_token
|
59 |
+
})
|
60 |
+
|
61 |
+
# Search for next occurrence
|
62 |
+
start_index = text.find(substring, end_index)
|
63 |
+
|
64 |
+
if not result:
|
65 |
+
print(f"Token boundaries not found for '{substring}'")
|
66 |
+
|
67 |
+
return result
|
68 |
+
|
69 |
+
|
70 |
+
def create_custom_entity_viz(data, full_text):
|
71 |
+
nlp = spacy.blank("xx")
|
72 |
+
doc = nlp(full_text)
|
73 |
+
|
74 |
+
spans = []
|
75 |
+
colors = {}
|
76 |
+
for node in data["nodes"]:
|
77 |
+
# entity_spans = [m.span() for m in re.finditer(re.escape(node["id"]), full_text)]
|
78 |
+
entity_spans = find_token_indices(doc, node["id"], full_text)
|
79 |
+
for dataentity in entity_spans:
|
80 |
+
start = dataentity["start"]
|
81 |
+
end = dataentity["end"]
|
82 |
+
|
83 |
+
print("entity spans:", entity_spans)
|
84 |
+
if start < len(doc) and end <= len(doc):
|
85 |
+
span = Span(doc, start, end, label=node["type"])
|
86 |
+
|
87 |
+
# print(span)
|
88 |
+
spans.append(span)
|
89 |
+
if node["type"] not in colors:
|
90 |
+
colors[node["type"]] = get_random_light_color()
|
91 |
+
|
92 |
+
for span in spans:
|
93 |
+
print(f"Span: {span.text}, Label: {span.label_}")
|
94 |
+
|
95 |
+
doc.set_ents(spans, default="unmodified")
|
96 |
+
doc.spans["sc"] = spans
|
97 |
+
|
98 |
+
options = {
|
99 |
+
"colors": colors,
|
100 |
+
"ents": list(colors.keys()),
|
101 |
+
"style": "ent",
|
102 |
+
"manual": True
|
103 |
+
}
|
104 |
+
|
105 |
+
html = displacy.render(doc, style="span", options=options)
|
106 |
+
return html
|
107 |
+
|
108 |
+
|
109 |
+
def create_graph(json_data):
|
110 |
+
G = nx.Graph()
|
111 |
+
|
112 |
+
for node in json_data['nodes']:
|
113 |
+
G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}")
|
114 |
+
|
115 |
+
for edge in json_data['edges']:
|
116 |
+
G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])
|
117 |
+
|
118 |
+
nt = Network(
|
119 |
+
width="720px",
|
120 |
+
height="600px",
|
121 |
+
directed=True,
|
122 |
+
notebook=False,
|
123 |
+
# bgcolor="#111827",
|
124 |
+
# font_color="white"
|
125 |
+
bgcolor="#FFFFFF",
|
126 |
+
font_color="#111827"
|
127 |
+
)
|
128 |
+
nt.from_nx(G)
|
129 |
+
nt.barnes_hut(
|
130 |
+
gravity=-3000,
|
131 |
+
central_gravity=0.3,
|
132 |
+
spring_length=50,
|
133 |
+
spring_strength=0.001,
|
134 |
+
damping=0.09,
|
135 |
+
overlap=0,
|
136 |
+
)
|
137 |
+
|
138 |
+
# Customize edge appearance
|
139 |
+
# for edge in nt.edges:
|
140 |
+
# edge['font'] = {'size': 12, 'color': '#FFD700', 'face': 'Arial'} # Removed strokeWidth
|
141 |
+
# edge['color'] = {'color': '#FF4500', 'highlight': '#FF4500'}
|
142 |
+
# edge['width'] = 1
|
143 |
+
# edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
|
144 |
+
# edge['smooth'] = {'type': 'curvedCW', 'roundness': 0.2}
|
145 |
+
|
146 |
+
html = nt.generate_html()
|
147 |
+
# need to remove ' from HTML
|
148 |
+
html = html.replace("'", '"')
|
149 |
+
# return html
|
150 |
+
|
151 |
+
return f"""<iframe style="width: 140%; height: 620px; margin: 0 auto;" name="result"
|
152 |
+
allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
|
153 |
+
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups
|
154 |
+
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
155 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
156 |
+
|
157 |
+
|
158 |
+
def process_and_visualize(text, model):
|
159 |
+
if not text or not model:
|
160 |
+
raise gr.Error("Text and model must be provided.")
|
161 |
+
json_data = extract(text, model)
|
162 |
+
# json_data = json_example
|
163 |
+
print(json_data)
|
164 |
+
entities_viz = create_custom_entity_viz(json_data, text)
|
165 |
+
|
166 |
+
graph_html = create_graph(json_data)
|
167 |
+
return graph_html, entities_viz, json_data
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
with gr.Blocks(title="Phi-3 Mini 4k Instruct Graph (by Emergent Methods") as demo:
|
172 |
+
gr.Markdown("# Phi-3 Mini 4k Instruct Graph (by Emergent Methods)")
|
173 |
+
gr.Markdown("Extract a JSON graph from a text input and visualize it.")
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
with gr.Column(scale=1):
|
177 |
+
input_model = gr.Dropdown(
|
178 |
+
MODEL_LIST, label="Model",
|
179 |
+
# value=MODEL_LIST[0]
|
180 |
+
)
|
181 |
+
input_text = gr.TextArea(label="Text", info="The text to be extracted")
|
182 |
+
|
183 |
+
examples = gr.Examples(
|
184 |
+
examples=[
|
185 |
+
handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing
|
186 |
+
lead singer Steven Tyler's unrecoverable vocal cord injury.
|
187 |
+
The decision comes after months of unsuccessful treatment for Tyler's fractured larynx,
|
188 |
+
which he suffered in September 2023."""),
|
189 |
+
handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
|
190 |
+
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
|
191 |
+
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
|
192 |
+
pleaded not guilty to the charges."""),
|
193 |
+
],
|
194 |
+
inputs=input_text
|
195 |
+
)
|
196 |
+
|
197 |
+
submit_button = gr.Button("Extract and Visualize")
|
198 |
+
|
199 |
+
with gr.Column(scale=1):
|
200 |
+
output_entity_viz = gr.HTML(label="Entities Visualization", show_label=True)
|
201 |
+
output_graph = gr.HTML(label="Graph Visualization", show_label=True)
|
202 |
+
# output_json = gr.JSON(label="JSON Graph")
|
203 |
+
|
204 |
+
submit_button.click(
|
205 |
+
fn=process_and_visualize,
|
206 |
+
inputs=[input_text, input_model],
|
207 |
+
outputs=[output_graph, output_entity_viz]
|
208 |
+
)
|
209 |
+
|
210 |
+
demo.launch(share=False)
|
phi3_instruct_graph.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
|
3 |
+
from textwrap import dedent
|
4 |
+
from huggingface_hub import login
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
login(
|
10 |
+
token=os.environ["HF_TOKEN"],
|
11 |
+
)
|
12 |
+
|
13 |
+
MODEL_LIST = [
|
14 |
+
"EmergentMethods/Phi-3-mini-4k-instruct-graph",
|
15 |
+
"EmergentMethods/Phi-3-mini-128k-instruct-graph",
|
16 |
+
"EmergentMethods/Phi-3-medium-128k-instruct-graph"
|
17 |
+
]
|
18 |
+
|
19 |
+
torch.random.manual_seed(0)
|
20 |
+
|
21 |
+
class Phi3InstructGraph:
|
22 |
+
def __init__(self, model = "EmergentMethods/Phi-3-mini-4k-instruct-graph"):
|
23 |
+
if model not in MODEL_LIST:
|
24 |
+
raise ValueError(f"model must be one of {MODEL_LIST}")
|
25 |
+
|
26 |
+
self.model_path = model
|
27 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
self.model_path,
|
29 |
+
device_map="cuda",
|
30 |
+
torch_dtype="auto",
|
31 |
+
trust_remote_code=True,
|
32 |
+
)
|
33 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
34 |
+
self.pipe = pipeline(
|
35 |
+
"text-generation",
|
36 |
+
model=self.model,
|
37 |
+
tokenizer=self.tokenizer,
|
38 |
+
)
|
39 |
+
|
40 |
+
def _generate(self, messages):
|
41 |
+
generation_args = {
|
42 |
+
"max_new_tokens": 2000,
|
43 |
+
"return_full_text": False,
|
44 |
+
"temperature": 0.0,
|
45 |
+
"do_sample": False,
|
46 |
+
}
|
47 |
+
|
48 |
+
return self.pipe(messages, **generation_args)
|
49 |
+
|
50 |
+
def _get_messages(self, text):
|
51 |
+
messages = [
|
52 |
+
{
|
53 |
+
"role": "system",
|
54 |
+
"content": dedent("""\n
|
55 |
+
A chat between a curious user and an artificial intelligence Assistant. The Assistant is an expert at identifying entities and relationships in text. The Assistant responds in JSON output only.
|
56 |
+
|
57 |
+
The User provides text in the format:
|
58 |
+
|
59 |
+
-------Text begin-------
|
60 |
+
<User provided text>
|
61 |
+
-------Text end-------
|
62 |
+
|
63 |
+
The Assistant follows the following steps before replying to the User:
|
64 |
+
|
65 |
+
1. **identify the most important entities** The Assistant identifies the most important entities in the text. These entities are listed in the JSON output under the key "nodes", they follow the structure of a list of dictionaries where each dict is:
|
66 |
+
|
67 |
+
"nodes":[{"id": <entity N>, "type": <type>, "detailed_type": <detailed type>}, ...]
|
68 |
+
|
69 |
+
where "type": <type> is a broad categorization of the entity. "detailed type": <detailed_type> is a very descriptive categorization of the entity.
|
70 |
+
|
71 |
+
2. **determine relationships** The Assistant uses the text between -------Text begin------- and -------Text end------- to determine the relationships between the entities identified in the "nodes" list defined above. These relationships are called "edges" and they follow the structure of:
|
72 |
+
|
73 |
+
"edges":[{"from": <entity 1>, "to": <entity 2>, "label": <relationship>}, ...]
|
74 |
+
|
75 |
+
The <entity N> must correspond to the "id" of an entity in the "nodes" list.
|
76 |
+
|
77 |
+
The Assistant never repeats the same node twice. The Assistant never repeats the same edge twice.
|
78 |
+
The Assistant responds to the User in JSON only, according to the following JSON schema:
|
79 |
+
|
80 |
+
{"type":"object","properties":{"nodes":{"type":"array","items":{"type":"object","properties":{"id":{"type":"string"},"type":{"type":"string"},"detailed_type":{"type":"string"}},"required":["id","type","detailed_type"],"additionalProperties":false}},"edges":{"type":"array","items":{"type":"object","properties":{"from":{"type":"string"},"to":{"type":"string"},"label":{"type":"string"}},"required":["from","to","label"],"additionalProperties":false}}},"required":["nodes","edges"],"additionalProperties":false}
|
81 |
+
""")
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"role": "user",
|
85 |
+
"content": dedent(f"""\n
|
86 |
+
-------Text begin-------
|
87 |
+
{text}
|
88 |
+
-------Text end-------
|
89 |
+
""")
|
90 |
+
}
|
91 |
+
]
|
92 |
+
return messages
|
93 |
+
|
94 |
+
|
95 |
+
def extract(self, text):
|
96 |
+
messages = self._get_messages(text)
|
97 |
+
pipe_output = self._generate(messages)
|
98 |
+
return pipe_output[0]["generated_text"]
|