tomcat commited on
Commit
d03165d
·
1 Parent(s): 0e12a16

Create app.py

Browse files

v1.0 released, It's my first public gradio app.

Files changed (1) hide show
  1. app.py +21 -0
app.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ #pp = pipeline("question-answering",model="deepset/roberta-base-squad2")
5
+ pp = pipeline("question-answering",model="luhua/chinese_pretrain_mrc_roberta_wwm_ext_large")
6
+
7
+ def qa_fn(ask,ctxt):
8
+ ret = pp(context=ctxt, question=ask);
9
+ ret['entity']='Answer';
10
+ return {"text":ctxt,"entities":[ret]}, ret['answer'], ret['score']
11
+ #注意HighlightedText的用法。有两种不同用法:https://gradio.app/named_entity_recognition/
12
+ # 一种是list of dict ,一种是list of tuple. 详细用法参考https://gradio.app/named_entity_recognition/吧
13
+
14
+ samples= [["乔治的哥哥叫什么名字?","我是小猪佩奇,我是乔治的哥哥,我家住在北京"],["乔治住在哪里呀?","我是小猪佩奇,我是乔治的哥哥,我的家在北京颐和园"]];
15
+
16
+ demo = gr.Interface(qa_fn,
17
+ inputs=[gr.Textbox(label="Question",placeholder='请输入问题'), gr.Textbox(label="Context",lines=10,placeholder="请输入一段文本")],
18
+ outputs=[gr.HighlightedText(label='答案位置'),gr.Textbox(label="答案"),gr.Number(label="Score")],
19
+ examples=samples);
20
+
21
+ demo.launch()