File size: 13,434 Bytes
0469e08 ff98ab7 0469e08 aeda90f 0469e08 d31c2af 0469e08 2c8e1ad aeda90f 2c8e1ad aeda90f 2c8e1ad aeda90f 2c8e1ad 32056ff 3b0c073 3bd6fba 22ed136 32056ff 22ed136 3b0c073 b75ba06 0469e08 3bd6fba 0469e08 2bd9b5e 0469e08 1aac498 5cbd5b0 1aac498 3bd6fba 1aac498 0469e08 051f01e 5028d04 2e769a9 2bd9b5e 5028d04 051f01e 5028d04 051f01e 0469e08 5028d04 0469e08 3bd6fba 2bd9b5e 3bd6fba 5028d04 3bd6fba 5028d04 d07cadd 2e769a9 3b78d85 d07cadd efe3694 d07cadd ea2b32e a7ff9c4 ea2b32e d07cadd 0469e08 3bd6fba d07cadd 880fa16 d07cadd 20e7544 d07cadd 0469e08 6330958 e7568fa fff26a5 c1da1e1 e7568fa 9c1207c 1aac498 f84ad09 1aac498 0469e08 2e769a9 0469e08 68a6103 818194d 2e769a9 0469e08 386d47d b521301 994dd24 1aac498 0469e08 51785c7 a7ff9c4 51785c7 d07cadd 51785c7 5028d04 0469e08 1aac498 d07cadd 1aac498 d07cadd 0b360e5 d07cadd 1aac498 d07cadd 0469e08 d07cadd 1aac498 0469e08 1aac498 0469e08 1aac498 d07cadd 2e769a9 d07cadd 2e769a9 d07cadd 0469e08 3bd6fba 0469e08 d07cadd 1aac498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import base64
import json
from datetime import datetime
import gradio as gr
import torch
import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files
# Define constants
DESCRIPTION = "[ShowUI Demo](https://huggingface.co/showlab/ShowUI-2B)"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28
# Specify the model repository and destination folder
model_repo = "showlab/ShowUI-2B"
destination_folder = "./showui-2b"
# Ensure the destination folder exists
os.makedirs(destination_folder, exist_ok=True)
# List all files in the repository
files = list_repo_files(repo_id=model_repo)
# Download each file to the destination folder
for file in files:
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
print(f"Downloaded {file} to {file_path}")
model = Qwen2VLForConditionalGeneration.from_pretrained(
destination_folder,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
# Helper functions
def draw_point(image_input, point=None, radius=5):
"""Draw a point on the image."""
if isinstance(image_input, str):
image = Image.open(image_input)
else:
image = Image.fromarray(np.uint8(image_input))
if point:
x, y = point[0] * image.width, point[1] * image.height
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
return image
def array_to_image_path(image_array, session_id):
"""Save the uploaded image and return its path."""
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
img = Image.fromarray(np.uint8(image_array))
filename = f"{session_id}.png"
img.save(filename)
return os.path.abspath(filename)
def crop_image(image_path, click_xy, crop_factor=0.5):
"""Crop the image around the click point."""
image = Image.open(image_path)
width, height = image.size
crop_width, crop_height = int(width * crop_factor), int(height * crop_factor)
center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height)
left = max(center_x - crop_width // 2, 0)
upper = max(center_y - crop_height // 2, 0)
right = min(center_x + crop_width // 2, width)
lower = min(center_y + crop_height // 2, height)
cropped_image = image.crop((left, upper, right, lower))
cropped_image_path = f"cropped_{os.path.basename(image_path)}"
cropped_image.save(cropped_image_path)
return cropped_image_path
@spaces.GPU
def run_showui(image, query, session_id, iterations=2):
"""Main function for iterative inference."""
image_path = array_to_image_path(image, session_id)
click_xy = None
images_during_iterations = [] # List to store images at each step
for _ in range(iterations):
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": _SYSTEM},
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
{"type": "text", "text": query}
],
}
]
global model
model = model.to("cuda")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
click_xy = ast.literal_eval(output_text)
# Draw point on the current image
result_image = draw_point(image_path, click_xy, radius=10)
images_during_iterations.append(result_image) # Store the current image
# Crop the image for the next iteration
image_path = crop_image(image_path, click_xy)
return images_during_iterations, str(click_xy)
def save_and_upload_data(image, query, session_id, is_example_image, votes=None):
"""Save the data to a JSON file and upload to S3."""
if is_example_image == "True":
return
votes = votes or {"upvotes": 0, "downvotes": 0}
# Save image locally
image_file_name = f"{session_id}.png"
image.save(image_file_name)
data = {
"image_path": image_file_name,
"query": query,
"votes": votes,
"timestamp": datetime.now().isoformat()
}
local_file_name = f"{session_id}.json"
with open(local_file_name, "w") as f:
json.dump(data, f)
return data
def update_vote(vote_type, session_id, is_example_image):
"""Update the vote count and re-upload the JSON file."""
if is_example_image == "True":
return "Example image."
local_file_name = f"{session_id}.json"
with open(local_file_name, "r") as f:
data = json.load(f)
if vote_type == "upvote":
data["votes"]["upvotes"] += 1
elif vote_type == "downvote":
data["votes"]["downvotes"] += 1
with open(local_file_name, "w") as f:
json.dump(data, f)
return f"Thank you for your {vote_type}!"
with open("./assets/showui.png", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
examples = [
["./examples/app_store.png", "Download Kindle.", True],
["./examples/ios_setting.png", "Turn off Do not disturb.", True],
# ["./examples/apple_music.png", "Star to favorite.", True],
# ["./examples/map.png", "Boston.", True],
# ["./examples/wallet.png", "Scan a QR code.", True],
# ["./examples/word.png", "More shapes.", True],
# ["./examples/web_shopping.png", "Proceed to checkout.", True],
# ["./examples/web_forum.png", "Post my comment.", True],
# ["./examples/safari_google.png", "Click on search bar.", True],
]
def build_demo(embed_mode, concurrency_count=1):
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
state_image_path = gr.State(value=None)
state_session_id = gr.State(value=None)
if not embed_mode:
gr.HTML(
f"""
<div style="text-align: center; margin-bottom: 20px;">
<div style="display: flex; justify-content: center;">
<img src="https://raw.githubusercontent.com/showlab/ShowUI/refs/heads/main/assets/showui.jpg" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
</div>
<p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
<div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
<a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
</a>
<a href="https://arxiv.org/abs/2411.17465" target="_blank">
<img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
</a>
<a href="https://github.com/showlab/ShowUI" target="_blank">
<img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
</a>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="numpy", label="Input Screenshot", placeholder="""#Try ShowUI with screenshots!
Windows: [Win + Shift + S]
macOS: [Command + Shift + 3]
Then upload/paste from clipboard 🤗
""")
# Add a slider for iteration count
iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps")
textbox = gr.Textbox(
show_label=True,
placeholder="Enter a query (e.g., 'Click Nahant')",
label="Query",
)
submit_btn = gr.Button(value="Submit", variant="primary")
# Examples component
gr.Examples(
examples=[[e[0], e[1]] for e in examples],
inputs=[imagebox, textbox],
outputs=[textbox], # Only update the query textbox
examples_per_page=3,
)
# Add a hidden dropdown to pass the `is_example` flag
is_example_dropdown = gr.Dropdown(
choices=["True", "False"],
value="False",
visible=False,
label="Is Example Image",
)
def set_is_example(query):
# Find the example and return its `is_example` flag
for _, example_query, is_example in examples:
if query.strip() == example_query.strip():
return str(is_example) # Return as string for Dropdown compatibility
return "False"
textbox.change(
set_is_example,
inputs=[textbox],
outputs=[is_example_dropdown],
)
with gr.Column(scale=8):
output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain", preview=True)
# output_gallery = gr.Gallery(label="Iterative Refinement")
gr.HTML(
"""
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
"""
)
output_coords = gr.Textbox(label="Final Clickable Coordinates")
gr.HTML(
"""
<p><strong>🤔 Good or bad? Rate your experience to help us improve! ⬇️</strong></p>
"""
)
with gr.Row(elem_id="action-buttons", equal_height=True):
upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary")
downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary")
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
def on_submit(image, query, iterations, is_example_image):
if image is None:
raise ValueError("No image provided. Please upload an image before submitting.")
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
images_during_iterations, click_coords = run_showui(image, query, session_id, iterations)
save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image)
return images_during_iterations, click_coords, session_id
submit_btn.click(
on_submit,
[imagebox, textbox, iteration_slider, is_example_dropdown],
[output_gallery, output_coords, state_session_id],
)
clear_btn.click(
lambda: (None, None, None, None),
inputs=None,
outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id],
queue=False
)
upvote_btn.click(
lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image),
inputs=[state_session_id, is_example_dropdown],
outputs=[],
queue=False
)
downvote_btn.click(
lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image),
inputs=[state_session_id, is_example_dropdown],
outputs=[],
queue=False
)
return demo
if __name__ == "__main__":
demo = build_demo(embed_mode=False)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
ssr_mode=False,
debug=True,
) |