ShowUI / app.py
h-siyuan's picture
Update app.py
5028d04 verified
raw
history blame
10.9 kB
import base64
import json
from datetime import datetime
import gradio as gr
import torch
import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files
import boto3
from botocore.exceptions import NoCredentialsError
# Define constants
DESCRIPTION = "[ShowUI Demo](https://huggingface.co/showlab/ShowUI-2B)"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28
# Specify the model repository and destination folder
model_repo = "showlab/ShowUI-2B"
destination_folder = "./showui-2b"
# Ensure the destination folder exists
os.makedirs(destination_folder, exist_ok=True)
# List all files in the repository
files = list_repo_files(repo_id=model_repo)
# Download each file to the destination folder
for file in files:
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
print(f"Downloaded {file} to {file_path}")
model = Qwen2VLForConditionalGeneration.from_pretrained(
destination_folder,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
# Helper functions
def draw_point(image_input, point=None, radius=5):
"""Draw a point on the image."""
if isinstance(image_input, str):
image = Image.open(image_input)
else:
image = Image.fromarray(np.uint8(image_input))
if point:
x, y = point[0] * image.width, point[1] * image.height
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
return image
def array_to_image_path(image_array, session_id):
"""Save the uploaded image and return its path."""
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
img = Image.fromarray(np.uint8(image_array))
filename = f"image_{session_id}.png"
img.save(filename)
return os.path.abspath(filename)
def upload_to_s3(file_name, bucket, object_name=None):
"""Upload a file to an S3 bucket."""
if object_name is None:
object_name = file_name
s3 = boto3.client('s3')
try:
s3.upload_file(file_name, bucket, object_name)
print(f"Uploaded {file_name} to {bucket}/{object_name}.")
return True
except FileNotFoundError:
print(f"The file {file_name} was not found.")
return False
except NoCredentialsError:
print("Credentials not available.")
return False
@spaces.GPU
def run_showui(image, query, session_id):
"""Main function for inference."""
image_path = array_to_image_path(image, session_id)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": _SYSTEM},
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
{"type": "text", "text": query}
],
}
]
global model
model = model.to("cuda")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
click_xy = ast.literal_eval(output_text)
result_image = draw_point(image_path, click_xy, radius=10)
return result_image, str(click_xy), image_path
def save_and_upload_data(image_path, query, session_id, votes=None):
"""Save the data to a JSON file and upload to S3."""
votes = votes or {"upvotes": 0, "downvotes": 0}
data = {
"image_path": image_path,
"query": query,
"votes": votes,
"timestamp": datetime.now().isoformat()
}
local_file_name = f"data_{session_id}.json"
with open(local_file_name, "w") as f:
json.dump(data, f)
upload_to_s3(local_file_name, 'altair.storage', object_name=f"ootb/{local_file_name}")
return data
def update_vote(vote_type, session_id):
"""Update the vote count and re-upload the JSON file."""
local_file_name = f"data_{session_id}.json"
with open(local_file_name, "r") as f:
data = json.load(f)
if vote_type == "upvote":
data["votes"]["upvotes"] += 1
elif vote_type == "downvote":
data["votes"]["downvotes"] += 1
with open(local_file_name, "w") as f:
json.dump(data, f)
upload_to_s3(local_file_name, 'altair.storage', object_name=f"ootb/{local_file_name}")
return f"Your {vote_type} has been recorded. Thank you!"
with open("./assets/showui.png", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
def build_demo(embed_mode, concurrency_count=1):
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
state_image_path = gr.State(value=None)
state_session_id = gr.State(value=None)
if not embed_mode:
gr.HTML(
f"""
<div style="text-align: center; margin-bottom: 20px;">
<div style="display: flex; justify-content: center;">
<img src="data:image/png;base64,{base64_image}" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
</div>
<p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
<div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
<a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
</a>
<a href="https://arxiv.org/abs/2411.17465" target="_blank">
<img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
</a>
<a href="https://github.com/showlab/ShowUI" target="_blank">
<img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
</a>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="numpy", label="Input Screenshot")
textbox = gr.Textbox(
show_label=True,
placeholder="Enter a query (e.g., 'Click Nahant')",
label="Query",
)
submit_btn = gr.Button(value="Submit", variant="primary")
gr.Examples(
examples=[
["./examples/app_store.png", "Download Kindle."],
["./examples/ios_setting.png", "Turn off Do not disturb."],
["./examples/apple_music.png", "Star to favorite."],
["./examples/map.png", "Boston."],
["./examples/wallet.png", "Scan a QR code."],
["./examples/word.png", "More shapes."],
["./examples/web_shopping.png", "Proceed to checkout."],
["./examples/web_forum.png", "Post my comment."],
["./examples/safari_google.png", "Click on search bar."],
],
inputs=[imagebox, textbox],
examples_per_page=3
)
with gr.Column(scale=8):
output_img = gr.Image(type="pil", label="Output Image")
gr.HTML(
"""
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
"""
)
output_coords = gr.Textbox(label="Clickable Coordinates")
with gr.Row(elem_id="action-buttons", equal_height=True):
upvote_btn = gr.Button(value="Looks good!", variant="secondary")
downvote_btn = gr.Button(value="Too bad!", variant="secondary")
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
def on_submit(image, query):
if image is None:
raise ValueError("No image provided. Please upload an image before submitting.")
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
result_image, click_coords, image_path = run_showui(image, query, session_id)
save_and_upload_data(image_path, query, session_id)
return result_image, click_coords, image_path, session_id
submit_btn.click(
on_submit,
[imagebox, textbox],
[output_img, output_coords, state_image_path, state_session_id],
)
clear_btn.click(
lambda: (None, None, None, None, None),
inputs=None,
outputs=[imagebox, textbox, output_img, output_coords, state_image_path, state_session_id],
queue=False
)
upvote_btn.click(
lambda session_id: update_vote("upvote", session_id),
inputs=state_session_id,
outputs=[],
queue=False
)
downvote_btn.click(
lambda session_id: update_vote("downvote", session_id),
inputs=state_session_id,
outputs=[],
queue=False
)
return demo
if __name__ == "__main__":
demo = build_demo(embed_mode=False)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
ssr_mode=False,
debug=True,
)