|
import base64 |
|
import gradio as gr |
|
import torch |
|
from PIL import Image, ImageDraw |
|
from qwen_vl_utils import process_vision_info |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
import ast |
|
import os |
|
from datetime import datetime |
|
import numpy as np |
|
|
|
|
|
def draw_point(image_input, point=None, radius=5): |
|
if isinstance(image_input, str): |
|
image = Image.open(image_input) |
|
else: |
|
image = Image.fromarray(np.uint8(image_input)) |
|
|
|
if point: |
|
x, y = point[0] * image.width, point[1] * image.height |
|
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') |
|
return image |
|
|
|
|
|
def array_to_image_path(image_array): |
|
if image_array is None: |
|
raise ValueError("No image provided. Please upload an image before submitting.") |
|
img = Image.fromarray(np.uint8(image_array)) |
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
filename = f"image_{timestamp}.png" |
|
img.save(filename) |
|
return os.path.abspath(filename) |
|
|
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
|
|
"/users/difei/siyuan/showui_demo/showui-2b", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
|
|
) |
|
|
|
|
|
min_pixels = 256 * 28 * 28 |
|
max_pixels = 1344 * 28 * 28 |
|
|
|
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) |
|
|
|
|
|
DESCRIPTION = "[ShowUI-2B Demo](https://huggingface.co/showlab/ShowUI-2B)" |
|
|
|
|
|
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." |
|
|
|
|
|
def run_showui(image, query): |
|
image_path = array_to_image_path(image) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": _SYSTEM}, |
|
{"type": "image", "image": image_path, "min_pixels": min_pixels, "max_pixels": max_pixels}, |
|
{"type": "text", "text": query} |
|
], |
|
} |
|
] |
|
|
|
|
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt" |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
|
|
click_xy = ast.literal_eval(output_text) |
|
|
|
|
|
result_image = draw_point(image_path, click_xy, radius=10) |
|
return result_image, str(click_xy) |
|
|
|
with open("./assets/showui.png", "rb") as image_file: |
|
base64_image = base64.b64encode(image_file.read()).decode("utf-8") |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML( |
|
f""" |
|
<div style="text-align: center; margin-bottom: 20px;"> |
|
<a href="https://github.com/showlab/ShowUI" target="_blank"> |
|
<img src="data:image/png;base64,{base64_image}" alt="ShowUI Logo" style="width: 200px; height: auto;"/> |
|
</a> |
|
</div> |
|
""" |
|
) |
|
|
|
gr.Markdown(DESCRIPTION) |
|
with gr.Tab(label="ShowUI-2B Input"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Screenshot") |
|
text_input = gr.Textbox(label="Query (e.g., 'Click Nahant')") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_img = gr.Image(label="Output Image") |
|
output_coords = gr.Textbox(label="Clickable Coordinates") |
|
|
|
submit_btn.click(run_showui, [input_img, text_input], [output_img, output_coords]) |
|
|
|
demo.queue(api_open=False) |
|
demo.launch() |
|
|