|
import base64 |
|
import json |
|
from datetime import datetime |
|
import gradio as gr |
|
import torch |
|
import spaces |
|
from PIL import Image, ImageDraw |
|
from qwen_vl_utils import process_vision_info |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor |
|
import ast |
|
import os |
|
import numpy as np |
|
from huggingface_hub import hf_hub_download, list_repo_files |
|
import boto3 |
|
from botocore.exceptions import NoCredentialsError |
|
|
|
|
|
DESCRIPTION = "[ShowUI Demo](https://huggingface.co/showlab/ShowUI-2B)" |
|
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." |
|
MIN_PIXELS = 256 * 28 * 28 |
|
MAX_PIXELS = 1344 * 28 * 28 |
|
|
|
|
|
model_repo = "showlab/ShowUI-2B" |
|
destination_folder = "./showui-2b" |
|
|
|
|
|
os.makedirs(destination_folder, exist_ok=True) |
|
|
|
|
|
files = list_repo_files(repo_id=model_repo) |
|
|
|
|
|
for file in files: |
|
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) |
|
print(f"Downloaded {file} to {file_path}") |
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
destination_folder, |
|
torch_dtype=torch.bfloat16, |
|
device_map="cpu", |
|
) |
|
|
|
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) |
|
|
|
|
|
def draw_point(image_input, point=None, radius=5): |
|
"""Draw a point on the image.""" |
|
if isinstance(image_input, str): |
|
image = Image.open(image_input) |
|
else: |
|
image = Image.fromarray(np.uint8(image_input)) |
|
|
|
if point: |
|
x, y = point[0] * image.width, point[1] * image.height |
|
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') |
|
return image |
|
|
|
def array_to_image_path(image_array, session_id): |
|
"""Save the uploaded image and return its path.""" |
|
if image_array is None: |
|
raise ValueError("No image provided. Please upload an image before submitting.") |
|
img = Image.fromarray(np.uint8(image_array)) |
|
filename = f"{session_id}.png" |
|
img.save(filename) |
|
return os.path.abspath(filename) |
|
|
|
def upload_to_s3(file_name, bucket, object_name=None): |
|
"""Upload a file to an S3 bucket.""" |
|
if object_name is None: |
|
object_name = file_name |
|
|
|
s3 = boto3.client('s3') |
|
|
|
try: |
|
s3.upload_file(file_name, bucket, object_name) |
|
|
|
return True |
|
except FileNotFoundError: |
|
|
|
return False |
|
except NoCredentialsError: |
|
|
|
return False |
|
|
|
@spaces.GPU |
|
def run_showui(image, query, session_id): |
|
"""Main function for inference.""" |
|
image_path = array_to_image_path(image, session_id) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": _SYSTEM}, |
|
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, |
|
{"type": "text", "text": query} |
|
], |
|
} |
|
] |
|
|
|
global model |
|
model = model.to("cuda") |
|
|
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt" |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
click_xy = ast.literal_eval(output_text) |
|
result_image = draw_point(image_path, click_xy, radius=10) |
|
return result_image, str(click_xy), image_path |
|
|
|
def save_and_upload_data(image_path, query, session_id, is_example_image, votes=None): |
|
"""Save the data to a JSON file and upload to S3.""" |
|
if is_example_image: |
|
|
|
return |
|
|
|
votes = votes or {"upvotes": 0, "downvotes": 0} |
|
data = { |
|
"image_path": image_path, |
|
"query": query, |
|
"votes": votes, |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
|
|
local_file_name = f"{session_id}.json" |
|
|
|
with open(local_file_name, "w") as f: |
|
json.dump(data, f) |
|
|
|
upload_to_s3(local_file_name, 'altair.storage', object_name=f"ootb/{local_file_name}") |
|
upload_to_s3(image_path, 'altair.storage', object_name=f"ootb/{os.path.basename(image_path)}") |
|
|
|
return data |
|
|
|
def update_vote(vote_type, session_id, is_example_image): |
|
"""Update the vote count and re-upload the JSON file.""" |
|
if is_example_image: |
|
|
|
return "Example image used. No vote recorded." |
|
|
|
local_file_name = f"{session_id}.json" |
|
|
|
with open(local_file_name, "r") as f: |
|
data = json.load(f) |
|
|
|
if vote_type == "upvote": |
|
data["votes"]["upvotes"] += 1 |
|
elif vote_type == "downvote": |
|
data["votes"]["downvotes"] += 1 |
|
|
|
with open(local_file_name, "w") as f: |
|
json.dump(data, f) |
|
|
|
upload_to_s3(local_file_name, 'altair.storage', object_name=f"ootb/{local_file_name}") |
|
|
|
return f"Your {vote_type} has been recorded. Thank you!" |
|
|
|
with open("./assets/showui.png", "rb") as image_file: |
|
base64_image = base64.b64encode(image_file.read()).decode("utf-8") |
|
|
|
def build_demo(embed_mode, concurrency_count=1): |
|
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo: |
|
state_image_path = gr.State(value=None) |
|
state_session_id = gr.State(value=None) |
|
state_is_example_image = gr.State(value=False) |
|
|
|
if not embed_mode: |
|
gr.HTML( |
|
f""" |
|
<div style="text-align: center; margin-bottom: 20px;"> |
|
<div style="display: flex; justify-content: center;"> |
|
<img src="data:image/png;base64,{base64_image}" alt="ShowUI" width="320" style="margin-bottom: 10px;"/> |
|
</div> |
|
<p>ShowUI is a lightweight vision-language-action model for GUI agents.</p> |
|
<div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;"> |
|
<a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank"> |
|
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/> |
|
</a> |
|
<a href="https://arxiv.org/abs/2411.17465" target="_blank"> |
|
<img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/> |
|
</a> |
|
<a href="https://github.com/showlab/ShowUI" target="_blank"> |
|
<img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/> |
|
</a> |
|
</div> |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
imagebox = gr.Image(type="numpy", label="Input Screenshot") |
|
textbox = gr.Textbox( |
|
show_label=True, |
|
placeholder="Enter a query (e.g., 'Click Nahant')", |
|
label="Query", |
|
) |
|
submit_btn = gr.Button(value="Submit", variant="primary") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["./examples/app_store.png", "Download Kindle."], |
|
["./examples/ios_setting.png", "Turn off Do not disturb."], |
|
["./examples/apple_music.png", "Star to favorite."], |
|
["./examples/map.png", "Boston."], |
|
["./examples/wallet.png", "Scan a QR code."], |
|
["./examples/word.png", "More shapes."], |
|
["./examples/web_shopping.png", "Proceed to checkout."], |
|
["./examples/web_forum.png", "Post my comment."], |
|
["./examples/safari_google.png", "Click on search bar."], |
|
], |
|
inputs=[imagebox, textbox], |
|
examples_per_page=3 |
|
) |
|
|
|
with gr.Column(scale=8): |
|
output_img = gr.Image(type="pil", label="Output Image") |
|
gr.HTML( |
|
""" |
|
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p> |
|
""" |
|
) |
|
output_coords = gr.Textbox(label="Clickable Coordinates") |
|
|
|
with gr.Row(elem_id="action-buttons", equal_height=True): |
|
upvote_btn = gr.Button(value="Looks good!", variant="secondary") |
|
downvote_btn = gr.Button(value="Too bad!", variant="secondary") |
|
clear_btn = gr.Button(value="🗑️ Clear", interactive=True) |
|
|
|
def on_submit(image, query): |
|
if image is None: |
|
raise ValueError("No image provided. Please upload an image before submitting.") |
|
|
|
session_id = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
print("image_path:", image) |
|
is_example_image = isinstance(image, str) and image.startswith("./examples/") |
|
|
|
result_image, click_coords, image_path = run_showui(image, query, session_id) |
|
|
|
save_and_upload_data(image_path, query, session_id, is_example_image) |
|
|
|
return result_image, click_coords, image_path, session_id, is_example_image |
|
|
|
submit_btn.click( |
|
on_submit, |
|
[imagebox, textbox], |
|
[output_img, output_coords, state_image_path, state_session_id, state_is_example_image], |
|
) |
|
|
|
clear_btn.click( |
|
lambda: (None, None, None, None, None), |
|
inputs=None, |
|
outputs=[imagebox, textbox, output_img, output_coords, state_image_path, state_session_id, state_is_example_image], |
|
queue=False |
|
) |
|
|
|
upvote_btn.click( |
|
lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image), |
|
inputs=[state_session_id, state_is_example_image], |
|
outputs=[], |
|
queue=False |
|
) |
|
|
|
downvote_btn.click( |
|
lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image), |
|
inputs=[state_session_id, state_is_example_image], |
|
outputs=[], |
|
queue=False |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = build_demo(embed_mode=False) |
|
demo.queue(api_open=False).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
ssr_mode=False, |
|
debug=True, |
|
) |