declare-lab-sutd
commited on
Commit
·
a120d23
1
Parent(s):
3a6eceb
Add tools
Browse files- tools/.ipynb_checkpoints/mix-checkpoint.py +51 -0
- tools/.ipynb_checkpoints/torch_tools-checkpoint.py +133 -0
- tools/__init__.py +0 -0
- tools/__pycache__/__init__.cpython-39.pyc +0 -0
- tools/__pycache__/mix.cpython-39.pyc +0 -0
- tools/__pycache__/torch_tools.cpython-39.pyc +0 -0
- tools/mix.py +51 -0
- tools/torch_tools.py +133 -0
tools/.ipynb_checkpoints/mix-checkpoint.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def a_weight(fs, n_fft, min_db=-80.0):
|
5 |
+
freq = np.linspace(0, fs // 2, n_fft // 2 + 1)
|
6 |
+
freq_sq = np.power(freq, 2)
|
7 |
+
freq_sq[0] = 1.0
|
8 |
+
weight = 2.0 + 20.0 * (2 * np.log10(12194) + 2 * np.log10(freq_sq)
|
9 |
+
- np.log10(freq_sq + 12194 ** 2)
|
10 |
+
- np.log10(freq_sq + 20.6 ** 2)
|
11 |
+
- 0.5 * np.log10(freq_sq + 107.7 ** 2)
|
12 |
+
- 0.5 * np.log10(freq_sq + 737.9 ** 2))
|
13 |
+
weight = np.maximum(weight, min_db)
|
14 |
+
|
15 |
+
return weight
|
16 |
+
|
17 |
+
|
18 |
+
def compute_gain(sound, fs, min_db=-80.0, mode="A_weighting"):
|
19 |
+
if fs == 16000:
|
20 |
+
n_fft = 2048
|
21 |
+
elif fs == 44100:
|
22 |
+
n_fft = 4096
|
23 |
+
else:
|
24 |
+
raise Exception("Invalid fs {}".format(fs))
|
25 |
+
stride = n_fft // 2
|
26 |
+
|
27 |
+
gain = []
|
28 |
+
for i in range(0, len(sound) - n_fft + 1, stride):
|
29 |
+
if mode == "RMSE":
|
30 |
+
g = np.mean(sound[i: i + n_fft] ** 2)
|
31 |
+
elif mode == "A_weighting":
|
32 |
+
spec = np.fft.rfft(np.hanning(n_fft + 1)[:-1] * sound[i: i + n_fft])
|
33 |
+
power_spec = np.abs(spec) ** 2
|
34 |
+
a_weighted_spec = power_spec * np.power(10, a_weight(fs, n_fft) / 10)
|
35 |
+
g = np.sum(a_weighted_spec)
|
36 |
+
else:
|
37 |
+
raise Exception("Invalid mode {}".format(mode))
|
38 |
+
gain.append(g)
|
39 |
+
|
40 |
+
gain = np.array(gain)
|
41 |
+
gain = np.maximum(gain, np.power(10, min_db / 10))
|
42 |
+
gain_db = 10 * np.log10(gain)
|
43 |
+
return gain_db
|
44 |
+
|
45 |
+
|
46 |
+
def mix(sound1, sound2, r, fs):
|
47 |
+
gain1 = np.max(compute_gain(sound1, fs)) # Decibel
|
48 |
+
gain2 = np.max(compute_gain(sound2, fs))
|
49 |
+
t = 1.0 / (1 + np.power(10, (gain1 - gain2) / 20.) * (1 - r) / r)
|
50 |
+
sound = ((sound1 * t + sound2 * (1 - t)) / np.sqrt(t ** 2 + (1 - t) ** 2))
|
51 |
+
return sound
|
tools/.ipynb_checkpoints/torch_tools-checkpoint.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
import random
|
4 |
+
import itertools
|
5 |
+
import numpy as np
|
6 |
+
from tools.mix import mix
|
7 |
+
|
8 |
+
|
9 |
+
def normalize_wav(waveform):
|
10 |
+
waveform = waveform - torch.mean(waveform)
|
11 |
+
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
|
12 |
+
return waveform * 0.5
|
13 |
+
|
14 |
+
|
15 |
+
def pad_wav(waveform, segment_length):
|
16 |
+
waveform_length = len(waveform)
|
17 |
+
|
18 |
+
if segment_length is None or waveform_length == segment_length:
|
19 |
+
return waveform
|
20 |
+
elif waveform_length > segment_length:
|
21 |
+
return waveform[:segment_length]
|
22 |
+
else:
|
23 |
+
pad_wav = torch.zeros(segment_length - waveform_length).to(waveform.device)
|
24 |
+
waveform = torch.cat([waveform, pad_wav])
|
25 |
+
return waveform
|
26 |
+
|
27 |
+
|
28 |
+
def _pad_spec(fbank, target_length=1024):
|
29 |
+
batch, n_frames, channels = fbank.shape
|
30 |
+
p = target_length - n_frames
|
31 |
+
if p > 0:
|
32 |
+
pad = torch.zeros(batch, p, channels).to(fbank.device)
|
33 |
+
fbank = torch.cat([fbank, pad], 1)
|
34 |
+
elif p < 0:
|
35 |
+
fbank = fbank[:, :target_length, :]
|
36 |
+
|
37 |
+
if channels % 2 != 0:
|
38 |
+
fbank = fbank[:, :, :-1]
|
39 |
+
|
40 |
+
return fbank
|
41 |
+
|
42 |
+
|
43 |
+
def read_wav_file(filename, segment_length):
|
44 |
+
waveform, sr = torchaudio.load(filename) # Faster!!!
|
45 |
+
try:
|
46 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)[0]
|
47 |
+
except:
|
48 |
+
print ("0 length wav encountered. Setting to random:", filename)
|
49 |
+
waveform = torch.rand(160000)
|
50 |
+
|
51 |
+
try:
|
52 |
+
waveform = normalize_wav(waveform)
|
53 |
+
except:
|
54 |
+
print ("Exception normalizing:", filename)
|
55 |
+
waveform = torch.ones(160000)
|
56 |
+
waveform = pad_wav(waveform, segment_length).unsqueeze(0)
|
57 |
+
waveform = waveform / torch.max(torch.abs(waveform))
|
58 |
+
waveform = 0.5 * waveform
|
59 |
+
return waveform
|
60 |
+
|
61 |
+
|
62 |
+
def get_mel_from_wav(audio, _stft):
|
63 |
+
audio = torch.nan_to_num(torch.clip(audio, -1, 1))
|
64 |
+
audio = torch.autograd.Variable(audio, requires_grad=False)
|
65 |
+
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
|
66 |
+
return melspec, log_magnitudes_stft, energy
|
67 |
+
|
68 |
+
|
69 |
+
def wav_to_fbank(paths, target_length=1024, fn_STFT=None):
|
70 |
+
assert fn_STFT is not None
|
71 |
+
|
72 |
+
waveform = torch.cat([read_wav_file(path, target_length * 160) for path in paths], 0) # hop size is 160
|
73 |
+
|
74 |
+
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
75 |
+
fbank = fbank.transpose(1, 2)
|
76 |
+
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
|
77 |
+
|
78 |
+
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
79 |
+
log_magnitudes_stft, target_length
|
80 |
+
)
|
81 |
+
|
82 |
+
return fbank, log_magnitudes_stft, waveform
|
83 |
+
|
84 |
+
|
85 |
+
def uncapitalize(s):
|
86 |
+
if s:
|
87 |
+
return s[:1].lower() + s[1:]
|
88 |
+
else:
|
89 |
+
return ""
|
90 |
+
|
91 |
+
|
92 |
+
def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=1024):
|
93 |
+
sound1 = read_wav_file(path1, target_length * 160)[0].numpy()
|
94 |
+
sound2 = read_wav_file(path2, target_length * 160)[0].numpy()
|
95 |
+
mixed_sound = mix(sound1, sound2, 0.5, 16000).reshape(1, -1)
|
96 |
+
mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2))
|
97 |
+
return mixed_sound, mixed_caption
|
98 |
+
|
99 |
+
|
100 |
+
def augment(paths, texts, num_items=4, target_length=1024):
|
101 |
+
mixed_sounds, mixed_captions = [], []
|
102 |
+
combinations = list(itertools.combinations(list(range(len(texts))), 2))
|
103 |
+
random.shuffle(combinations)
|
104 |
+
if len(combinations) < num_items:
|
105 |
+
selected_combinations = combinations
|
106 |
+
else:
|
107 |
+
selected_combinations = combinations[:num_items]
|
108 |
+
|
109 |
+
for (i, j) in selected_combinations:
|
110 |
+
new_sound, new_caption = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length)
|
111 |
+
mixed_sounds.append(new_sound)
|
112 |
+
mixed_captions.append(new_caption)
|
113 |
+
|
114 |
+
waveform = torch.tensor(np.concatenate(mixed_sounds, 0))
|
115 |
+
waveform = waveform / torch.max(torch.abs(waveform))
|
116 |
+
waveform = 0.5 * waveform
|
117 |
+
|
118 |
+
return waveform, mixed_captions
|
119 |
+
|
120 |
+
|
121 |
+
def augment_wav_to_fbank(paths, texts, num_items=4, target_length=1024, fn_STFT=None):
|
122 |
+
assert fn_STFT is not None
|
123 |
+
|
124 |
+
waveform, captions = augment(paths, texts)
|
125 |
+
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
126 |
+
fbank = fbank.transpose(1, 2)
|
127 |
+
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
|
128 |
+
|
129 |
+
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
130 |
+
log_magnitudes_stft, target_length
|
131 |
+
)
|
132 |
+
|
133 |
+
return fbank, log_magnitudes_stft, waveform, captions
|
tools/__init__.py
ADDED
File without changes
|
tools/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (144 Bytes). View file
|
|
tools/__pycache__/mix.cpython-39.pyc
ADDED
Binary file (1.7 kB). View file
|
|
tools/__pycache__/torch_tools.cpython-39.pyc
ADDED
Binary file (3.87 kB). View file
|
|
tools/mix.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def a_weight(fs, n_fft, min_db=-80.0):
|
5 |
+
freq = np.linspace(0, fs // 2, n_fft // 2 + 1)
|
6 |
+
freq_sq = np.power(freq, 2)
|
7 |
+
freq_sq[0] = 1.0
|
8 |
+
weight = 2.0 + 20.0 * (2 * np.log10(12194) + 2 * np.log10(freq_sq)
|
9 |
+
- np.log10(freq_sq + 12194 ** 2)
|
10 |
+
- np.log10(freq_sq + 20.6 ** 2)
|
11 |
+
- 0.5 * np.log10(freq_sq + 107.7 ** 2)
|
12 |
+
- 0.5 * np.log10(freq_sq + 737.9 ** 2))
|
13 |
+
weight = np.maximum(weight, min_db)
|
14 |
+
|
15 |
+
return weight
|
16 |
+
|
17 |
+
|
18 |
+
def compute_gain(sound, fs, min_db=-80.0, mode="A_weighting"):
|
19 |
+
if fs == 16000:
|
20 |
+
n_fft = 2048
|
21 |
+
elif fs == 44100:
|
22 |
+
n_fft = 4096
|
23 |
+
else:
|
24 |
+
raise Exception("Invalid fs {}".format(fs))
|
25 |
+
stride = n_fft // 2
|
26 |
+
|
27 |
+
gain = []
|
28 |
+
for i in range(0, len(sound) - n_fft + 1, stride):
|
29 |
+
if mode == "RMSE":
|
30 |
+
g = np.mean(sound[i: i + n_fft] ** 2)
|
31 |
+
elif mode == "A_weighting":
|
32 |
+
spec = np.fft.rfft(np.hanning(n_fft + 1)[:-1] * sound[i: i + n_fft])
|
33 |
+
power_spec = np.abs(spec) ** 2
|
34 |
+
a_weighted_spec = power_spec * np.power(10, a_weight(fs, n_fft) / 10)
|
35 |
+
g = np.sum(a_weighted_spec)
|
36 |
+
else:
|
37 |
+
raise Exception("Invalid mode {}".format(mode))
|
38 |
+
gain.append(g)
|
39 |
+
|
40 |
+
gain = np.array(gain)
|
41 |
+
gain = np.maximum(gain, np.power(10, min_db / 10))
|
42 |
+
gain_db = 10 * np.log10(gain)
|
43 |
+
return gain_db
|
44 |
+
|
45 |
+
|
46 |
+
def mix(sound1, sound2, r, fs):
|
47 |
+
gain1 = np.max(compute_gain(sound1, fs)) # Decibel
|
48 |
+
gain2 = np.max(compute_gain(sound2, fs))
|
49 |
+
t = 1.0 / (1 + np.power(10, (gain1 - gain2) / 20.) * (1 - r) / r)
|
50 |
+
sound = ((sound1 * t + sound2 * (1 - t)) / np.sqrt(t ** 2 + (1 - t) ** 2))
|
51 |
+
return sound
|
tools/torch_tools.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
import random
|
4 |
+
import itertools
|
5 |
+
import numpy as np
|
6 |
+
from tools.mix import mix
|
7 |
+
|
8 |
+
|
9 |
+
def normalize_wav(waveform):
|
10 |
+
waveform = waveform - torch.mean(waveform)
|
11 |
+
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
|
12 |
+
return waveform * 0.5
|
13 |
+
|
14 |
+
|
15 |
+
def pad_wav(waveform, segment_length):
|
16 |
+
waveform_length = len(waveform)
|
17 |
+
|
18 |
+
if segment_length is None or waveform_length == segment_length:
|
19 |
+
return waveform
|
20 |
+
elif waveform_length > segment_length:
|
21 |
+
return waveform[:segment_length]
|
22 |
+
else:
|
23 |
+
pad_wav = torch.zeros(segment_length - waveform_length).to(waveform.device)
|
24 |
+
waveform = torch.cat([waveform, pad_wav])
|
25 |
+
return waveform
|
26 |
+
|
27 |
+
|
28 |
+
def _pad_spec(fbank, target_length=1024):
|
29 |
+
batch, n_frames, channels = fbank.shape
|
30 |
+
p = target_length - n_frames
|
31 |
+
if p > 0:
|
32 |
+
pad = torch.zeros(batch, p, channels).to(fbank.device)
|
33 |
+
fbank = torch.cat([fbank, pad], 1)
|
34 |
+
elif p < 0:
|
35 |
+
fbank = fbank[:, :target_length, :]
|
36 |
+
|
37 |
+
if channels % 2 != 0:
|
38 |
+
fbank = fbank[:, :, :-1]
|
39 |
+
|
40 |
+
return fbank
|
41 |
+
|
42 |
+
|
43 |
+
def read_wav_file(filename, segment_length):
|
44 |
+
waveform, sr = torchaudio.load(filename) # Faster!!!
|
45 |
+
try:
|
46 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)[0]
|
47 |
+
except:
|
48 |
+
print ("0 length wav encountered. Setting to random:", filename)
|
49 |
+
waveform = torch.rand(160000)
|
50 |
+
|
51 |
+
try:
|
52 |
+
waveform = normalize_wav(waveform)
|
53 |
+
except:
|
54 |
+
print ("Exception normalizing:", filename)
|
55 |
+
waveform = torch.ones(160000)
|
56 |
+
waveform = pad_wav(waveform, segment_length).unsqueeze(0)
|
57 |
+
waveform = waveform / torch.max(torch.abs(waveform))
|
58 |
+
waveform = 0.5 * waveform
|
59 |
+
return waveform
|
60 |
+
|
61 |
+
|
62 |
+
def get_mel_from_wav(audio, _stft):
|
63 |
+
audio = torch.nan_to_num(torch.clip(audio, -1, 1))
|
64 |
+
audio = torch.autograd.Variable(audio, requires_grad=False)
|
65 |
+
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
|
66 |
+
return melspec, log_magnitudes_stft, energy
|
67 |
+
|
68 |
+
|
69 |
+
def wav_to_fbank(paths, target_length=1024, fn_STFT=None):
|
70 |
+
assert fn_STFT is not None
|
71 |
+
|
72 |
+
waveform = torch.cat([read_wav_file(path, target_length * 160) for path in paths], 0) # hop size is 160
|
73 |
+
|
74 |
+
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
75 |
+
fbank = fbank.transpose(1, 2)
|
76 |
+
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
|
77 |
+
|
78 |
+
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
79 |
+
log_magnitudes_stft, target_length
|
80 |
+
)
|
81 |
+
|
82 |
+
return fbank, log_magnitudes_stft, waveform
|
83 |
+
|
84 |
+
|
85 |
+
def uncapitalize(s):
|
86 |
+
if s:
|
87 |
+
return s[:1].lower() + s[1:]
|
88 |
+
else:
|
89 |
+
return ""
|
90 |
+
|
91 |
+
|
92 |
+
def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=1024):
|
93 |
+
sound1 = read_wav_file(path1, target_length * 160)[0].numpy()
|
94 |
+
sound2 = read_wav_file(path2, target_length * 160)[0].numpy()
|
95 |
+
mixed_sound = mix(sound1, sound2, 0.5, 16000).reshape(1, -1)
|
96 |
+
mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2))
|
97 |
+
return mixed_sound, mixed_caption
|
98 |
+
|
99 |
+
|
100 |
+
def augment(paths, texts, num_items=4, target_length=1024):
|
101 |
+
mixed_sounds, mixed_captions = [], []
|
102 |
+
combinations = list(itertools.combinations(list(range(len(texts))), 2))
|
103 |
+
random.shuffle(combinations)
|
104 |
+
if len(combinations) < num_items:
|
105 |
+
selected_combinations = combinations
|
106 |
+
else:
|
107 |
+
selected_combinations = combinations[:num_items]
|
108 |
+
|
109 |
+
for (i, j) in selected_combinations:
|
110 |
+
new_sound, new_caption = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length)
|
111 |
+
mixed_sounds.append(new_sound)
|
112 |
+
mixed_captions.append(new_caption)
|
113 |
+
|
114 |
+
waveform = torch.tensor(np.concatenate(mixed_sounds, 0))
|
115 |
+
waveform = waveform / torch.max(torch.abs(waveform))
|
116 |
+
waveform = 0.5 * waveform
|
117 |
+
|
118 |
+
return waveform, mixed_captions
|
119 |
+
|
120 |
+
|
121 |
+
def augment_wav_to_fbank(paths, texts, num_items=4, target_length=1024, fn_STFT=None):
|
122 |
+
assert fn_STFT is not None
|
123 |
+
|
124 |
+
waveform, captions = augment(paths, texts)
|
125 |
+
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
|
126 |
+
fbank = fbank.transpose(1, 2)
|
127 |
+
log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
|
128 |
+
|
129 |
+
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
|
130 |
+
log_magnitudes_stft, target_length
|
131 |
+
)
|
132 |
+
|
133 |
+
return fbank, log_magnitudes_stft, waveform, captions
|